
POSIX.WRI File
Microsoft® Windows NT™ Resource Kit--POSIX Utilities

Copyright © Microsoft Corp. 1985-1993

This document contains important information that is not included in the online Help or the printed
documents that are part of the Windows NT Resource Kit. In particular, this document contains
information about the POSIX utilities.

Using Write to View This Document
If you enlarge the Write window to its maximum size, this document will be easier to read. To do so, click
the Maximize button in the upper-right corner of the window. Or open the Control menu in the upper-left
corner of the Write window (press ALT+SPACEBAR), and then choose the Maximize command.

To move through the document, press PAGE UP or PAGE DOWN or click the arrows at the top and bottom
of the scroll bar along the right side of the Write window.

To print the document, choose the Print command from the File menu.

For Help on using Write, press F1.

To read other online documents, choose the Open command from the File menu.

The following copyright notice applies to both the POSIX utilities provided in binary form as well as the
source code on the compact disc.

Copyright (c) 1988, 1989, 1990 The Regents of the University of California. All rights reserved.
This code is derived from software contributed to Berkeley by Adam de Boor.

This software and documentation is based in part on BSD Networking Software licensed from the
Regents of the University of California, Berkeley. We acknowledge the role of the Computer Systems
Research Group and the Electrical Engineering and Computer Sciences Department of the University of
California, Berkeley, and the Other Contributors in its development.
Redistribution and use in source and binary forms, with or without modification, are permitted provided
that the following conditions are met:
1. Redistributions of source code must retain the above copyright notice, this list of conditions
 and the following disclaimer.
2. Redistributions in binary form must reproduce the above copyright notice, this list of conditions
 and the following disclaimer in the documentation and/or other materials provided with the
 distribution.
3. All advertising materials mentioning features or use of this software must display the following
 acknowledgement: This product includes software developed by the University of California,
 Berkeley and its contributors.
4. Neither the name of the University nor the names of its contributors may be used to endorse
 or promote products derived from this software without specific prior written permission.
THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND ANY EXPRESS OR IMPLIED
WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A
PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE FOR ANY
DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED
TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR
TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF
ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

POSIX.WRI -- Page 2

Contents
This document contains information on these commands:

ar, page 2
cat, page 5
cc, page 6
chmod, page 21
cp, page 24
find, page 26
ln, page 30
ls, page 31
make, page 34
mkdir, page 42
mv, page 43
rm, page 44
rmdir, page 45
sh, page 46
touch, page 58
wc, page 59

For more details about the ar, cc, devsrv, find, ld, make, sh, and vi commands, see RKTOOLS.HLP in
the Resource Kit program group.

POSIX.WRI -- Page 3

NAME
ar -- create and maintain library archives

SYNOPSIS
ar -d[-Tv] archive file ...
ar -m[-Tv] archive file ...
ar -m[-abiTv] position archive file ...
ar -p[-Tv] archive [file ...]
ar -q[-cTv] archive file ...
ar -r[-cuTv] archive file ...
ar -r[-abciuTv] position archive file ...
ar -t[-Tv] archive [file ...]
ar -x[-ouTv] archive [file ...]

DESCRIPTION
The ar utility creates and maintains groups of files combined into an archive. Once an archive has been
created, new files can be added and existing files can be extracted, deleted, or replaced.

Files are named in the archive by a single component; for example, if a file referenced by a path
containing a slash ("/") is archived, it will be named by the last component of that path. When matching
paths are listed on the command line against file names stored in the archive, only the last component of
the path will be compared.

All information and error messages use the path listed on the command line, if any was specified;
otherwise the name in the archive is used. If multiple files in the archive have the same name and paths
are listed on the command line to "select" archive files for an operation, only the first file with a matching
name will be selected.

The normal use of are is for creating and maintaining libraries that are suitable for use with the loader (see
ld) although it is not restricted to this purpose. The options follow.

-a
A positioning modifier used with the options -r and -m. The files are entered or moved after the
archive member position, which must be specified.

-b
A positioning modifier used with the options -r and -m. The files are entered or moved before the
archive member position, which must be specified.

-c
Whenever an archive is created, an information message to that effect is written to standard error.
If the -c option is specified, ar creates the archive silently.

-d
Deletes the specified archive files.

-i
A positioning modifier used with the options -r and -m. The files are entered or moved before
the archive member position, which must be specified. (Identical to the -b option.)

-m
Moves the specified archive files within the archive. If one of the options -a, -b, or -i is specified,
the files are moved before or after the position file in the archive. If none of those options are
specified, the files are moved to the end of the archive.

POSIX.WRI -- Page 4

-o
Sets the access and modification times of extracted files to the modification time of the file when
it was entered into the archive. This will fail if the user is not the owner of the extracted file or
the superuser.

-p
Writes the contents of the specified archive files to the standard output. If no files are specified,
the contents of all the files in the archive are written in the order they appear in the archive.

-q
(Quickly) appends the specified files to the archive. If the archive does not exist, a new archive
file is created. When creating a large archive piece-by-piece, this is much faster than the -r
option, as no checking is done to see if the files already exist in the archive.

-r
Replaces or adds the specified files to the archive. If the archive does not exist, a new archive file
is created. Files that replace existing files do not change the order of the files within the archive.
New files are appended to the archive unless one of the options -a, -b, or -i is specified.

-T
Selects and/or names archive members using only the first 15 characters of the archive member or
command line file name. The historic archive format had 16 bytes for the name, but some
historic archiver and loader implementations were unable to handle names that used the entire
space. This means that file names that are not unique in their first 15 characters can subsequently
be confused. A warning message is printed to the standard error output if any file names are
truncated.

-t
Lists the specified files in the order in which they appear in the archive, each on a separate line.
If no files are specified, all files in the archive are listed.

-u
Updates files. When used with the -r option, files in the archive will be replaced only if the disk
file has a newer modification time than the file in the archive. When used with the -x option, files
in the archive will be extracted only if the archive file has a newer modification time than the file
on disk.

-v
Provides verbose output. When used with the -d, -m, -q, or -x options, ar gives a file-by-file
description of the archive modification. This description consists of three, white-space separated
fields: the option letter, a dash ("-"), and the file name. When used with the -r option, ar displays
the description as above, but the initial letter is an "a" if the file is added to the archive and an "r"
if the file replaces a file already in the archive.

When used with the -p option, the name of each printed file is written to the standard output
before the contents of the file (preceded by a single newline character and followed by two
newline characters, enclosed in less-than ("<") and greater-than (">") characters).

When used with the -t option, ar displays an "ls -l" style listing of information about the members
of the archive. This listing consists of eight, white-space separated fields: the file permissions,
the decimal user and group ID's separated by a single slash ("/"), the file size (in bytes), the file
modification time (in the date(1) format "%b %e %H:%M %Y"), and the name of the file.

-x
Extracts the specified archive members into the files named by the command line arguments. If
no members are specified, all the members of the archive are extracted into the current directory.
If the file does not exist, it is created; if it does exist, the owner and group will be unchanged.
The file access and modification times are the time of the extraction (also see the -o option). The
file permissions will be set to those of the file when it was entered into the archive; this will fail if
the user is not the owner of the extracted file or the superuser.

POSIX.WRI -- Page 5

The ar utility exits 0 on success, and >0 if an error occurs.

ENVIRONMENT
TMPDIR

The pathname of the directory to use when creating temporary files.

FILES
/tmp

default temporary file directory

ar.XXXXXX
temporary file names

COMPATIBILITY
By default, ar writes archives that may be incompatible with historic archives, as the format used for
storing archive members with names longer than 15 characters has changed. This implementation of ar is
backward-compatible with previous versions of ar in that it can read and write (using the -T option)
historic archives. The -T option is provided for compatibility only and will be deleted in a future release.

STANDARDS
The ar utility is expected to offer a superset of the POSIX 1003.2 functionality.

POSIX.WRI -- Page 6

NAME
cat -- concatenate and print files

SYNOPSIS
cat [-b] [-e] [-n] [-s] [-t] [-u] [-v] [file ...]

DESCRIPTION
The cat utility reads files sequentially, writing them to the standard output. The file operands are
processed in command line order. A single dash represents standard input. The options follow.

-b
Implies the -n option but does not number blank lines.

-e
Implies the -v option, and displays a dollar sign ("$") at the end of each line as well.

-n
Numbers the output lines, starting at 1.

-s
Squeezes multiple adjacent empty lines, causing the output to be single-spaced.

-t
Implies the -v option and displays tab characters as "^I" as well.

-u
The -u option guarantees that the output is unbuffered.

-v
Displays nonprinting characters so they are visible. Control characters print line "^X" for
control-X; the delete character (octal 0177) prints as "^?". Non-ASCII characters (with the high
bit set) are printed as "M-" (for meta) followed by the character for the low 7 bits.

The cat utility exits 0 on success and >0 if an error occurs.

BUGS
Because of the shell language mechanism used to perform output redirection, the command

 cat file1 file2 > file1

will cause the original data in file1 to be destroyed!

HISTORY
A cat command appeared in Sixth Edition AT&T UNIX.

POSIX.WRI -- Page 7

NAME
cc -- GNU project C Compiler

SYNOPSIS
cc [options] file ...

DESCRIPTION
cc is a version of the GNU C compiler. It accepts a dialect of ANSI C with extensions; this dialect is
different from the dialect used in 4.3 BSD and earlier distributions. The -traditional flag causes the
compiler to accept a dialect of extended Classic C, much like the C of these earlier distributions. If you
are not already familiar with ANSI C and its new features, you will want to build your software with
-traditional.

DIFFERENCES
Most older C compiler flags are supported by cc. Three that are not are -go, to generate symbol tables for
the unsupported sdb debugger; -f, for single precision floating point in expressions (which is now the
default); and -t, for alternate compiler passes.

The differences between ANSI C and Classic C dialects are too numerous to describe here in detail. The
following quick summary is intended to make users aware of potential subtle problems when converting
Classic C code to ANSI C.

The most obvious change is the pervasive use of function prototypes. Under the ANSI C dialect, the
compiler checks number and type of arguments to C library functions when standard header files are
included; calls that fail to match will yield errors. A subtle consequence of adding prototype declarations
is that user code which inadvertently redefines a C library function may break; for example it is no longer
possible to write an abort function that takes different parameters or returns a different value from the
standard abort, when including standard header files.

Another issue with prototypes is that functions which take different parameter types no longer have the
same type; function pointers now differ by parameter types as well as return types. Variable argument
lists are handled differently; the old varargs(3) package is obsolete; it was replaced by stdarg(3), which
unfortunately is not completely compatible. A subtle change in type promotion can be confusing: small
unsigned types are now widened into signed types rather than unsigned types. A similar problem can
occur with the sizeof operator, which now yields an unsigned type rather than a signed type. One
common problem is due to a change in scoping: external declarations are now scoped to the block they
occur in, so a declaration for (say) errno inside one block will no longer declare it in all subsequent
blocks. The syntax for braces in structure initializations is now a bit stricter, and it is sometimes
necessary to add braces to please the compiler.

Two very subtle and sometimes very annoying features apply to constant strings and to the longjmp(3)
function. Constant strings in the ANSI dialect are read-only; attempts to alter them cause protection
violations. This ANSI feature permits the compiler to coalesce identical strings in the same source file;
and, since the read-only part of a binary is sharable, it saves space when multiple copies of a binary are
running at the same time. The most common difficulty with read-only strings lies with the use of the
mktemp function, which in the past often altered a constant string argument. It is now necessary to copy
a constant string before it may be altered. The longjmp function may now destroy any register or stack
variable in the function that made the corresponding call to the setjmp function; to protect a local
variable, the new ANSI volatile modifier must be used. This often leads to confusing situations upon
'return' from setjmp. The compiler has extended warning flags for dealing with read-only strings and
setjmp, but these are not very effective.

POSIX.WRI -- Page 8

If your code has problems with any of these ANSI features, you will probably want to use -traditional.
Even with -traditional, there are some differences between this dialect of Classic C and the dialect
supported on older distributions.

There are at least two differences that are a consequence of the fact that cc uses an ANSI C style grammar
for both traditional and ANSI modes. The old C dialect permitted a typedef to replace a simple type in the
idiom "unsigned type"; this cc treats such forms as syntax errors. The old C dialect also permitted formal
parameters to have the same names as typedef types; the current dialect does not.

Some questionable or illegal practices that were supported in the old C dialect are not supported by
-traditional: noncomment text at the end of a "#include" preprocessor control line is an error, not
ignored; compound assignment operators must not contain white space, e.g. "* =" is not the same as
"*="; the last member declaration in a structure or union must be terminated by a semicolon; it is not
possible to "switch" on function pointers; more than one occurrence of "#else" at the same level in a
preprocessor "#if" clause is an error, not ignored.

Some truly ancient C practices are no longer supported. The idiom of declaring an anonymous structure
and using its members to extract fields from other structures or even nonstructures is illegal. Integers are
not automatically converted to pointers when they are dereferenced. The -traditional dialect does not
retain the so-called "old-fashioned" assignment operators (with the "=" preceding rather than following
the operator) or initializations (with no "=" between initializer and initializee).

WARNING
The rest of this topic is an extract of the documentation of the GNU C compiler and is limited to the
meaning of the options. It is not kept up to date. If you want to be certain of the information below,
check it in the manual "Using and Porting GCC". Refer to the Info file gcc.info or the DVI file gcc.dvi,
which are made from the Texinfo source file gcc.texinfo.

The GNU C compiler uses a command syntax much like the UNIX C compiler. The cc program accepts
options and file names as operands. Multiple single-letter options may not be grouped: -dr is very
different from -d -r.

When you invoke GNU CC, it normally does preprocessing, compiling, assembly, and linking. File
names which end in .c are taken as C source to be preprocessed and compiled; file names ending in .i are
taken as preprocessor output to be compiled; compiler output files plus any input files with names ending
in .s are assembled; then the resulting object files, plus any other input files, are linked to produce an
executable.
Command options allow you to stop this process at an intermediate stage. For example, the -c option says
not to run the linker. Then the output consists of object files output by the assembler.

Other command options are passed on to one stage of processing. Some options control the preprocessor
and others the compiler itself. Yet other options control the assembler and linker; these are not
documented here, but you rarely need to use any of them.

POSIX.WRI -- Page 9

OPTIONS
Here are the options to control the overall compilation process, including those that say whether to link,
whether to assemble, and so on.

-o file
Places output in file file. This applies regardless of whatever sort of output is being produced --
whether it is an executable file, an object file, an assembler file, or preprocessed C code.
If -o is not specified, the default is to put an executable file in a.out, the object file source.c in
source.o, an assembler file in source.s, and preprocessed C on standard output.

-c
Compiles or assembles the source files, but does not link. Produces object files with names made
by replacing .c or .s with .o at the end of the input file names. Does nothing at all for object files
specified as input.

-S
Compiles into assembler code but does not assemble. The assembler output file name is made by
replacing .c with .s at the end of the input file name. Does nothing at all for assembler source
files or object files specified as input.

-E
Runs only the C preprocessor. Preprocess all the C source files specified and outputs the results
to standard output.

-v
Compiler driver program prints the commands it executes as it runs the preprocessor, compiler
proper, assembler, and linker. Some of these are directed to print their own version numbers.

-pipe
Uses pipes rather than temporary files to communicate between the various stages of compilation.
This fails to work on some systems where the assembler is unable to read from a pipe; but the
GNU assembler has no trouble.

-Bprefix
Compiler driver program tries prefix as a prefix for each program it tries to run. These programs
are cpp, cc1, as, and ld.

For each subprogram to be run, the compiler driver first tries the -B prefix, if any. If that name is
not found, or if -B was not specified, the driver tries a standard prefix (which currently is
/usr/libexec/). If this does not result in a file name that is found, the unmodified program name is
searched for using the directories specified in your PATH environment variable.

You can get a similar result from the environment variable GCC_EXEC_PREFIX; if it is
defined, its value is used as a prefix in the same way. If both the -B option and the
GCC_EXEC_PREFIX variable are present, the -B option is used first and the environment
variable value is used second.

-bprefix
The argument prefix is used as a second prefix for the compiler executables and libraries. This
prefix is optional: the compiler tries each file first with it, then without it. This prefix follows the
prefix specified with -B or the default prefixes.

Thus, -bvax- -Bcc/ in the presence of environment variable GCC_EXEC_PREFIX with
definition /u/foo/ causes GNU CC to try the following file names for the preprocessor executable.

cc/vax-cpp
cc/cpp
/u/foo/vax-cpp
/u/foo/cpp
/usr/libexec/vax-cpp

POSIX.WRI -- Page 10

/usr/libexec/cpp
The following options control the details of C compilation itself.

-ansi
Supports all ANSI standard C programs.

This turns off certain features of GNU C that are incompatible with ANSI C, such as the asm,
inline, and typeof keywords and predefined macros such as unix and vax that identify the type of
system you are using. It also enables the undesirable and rarely used ANSI trigraph feature.
The alternate keywords __asm__, __inline__, and __typeof__ continue to work despite -ansi.
You would not want to use them in an ANSI C program, of course; but it useful to put them in
header files that might be included in compilations done with -ansi. Alternate predefined macros
such as __unix__ and __vax__ are also available, with or without -ansi.

The -ansi option does not cause non-ANSI programs to be rejected gratuitously. For that,
-pedantic is required in addition to -ansi.

The macro __STRICT_ANSI__ is predefined when the -ansi option is used. Some header files
may notice this macro and refrain from declaring certain functions or defining certain macros that
the ANSI standard does not call for; this is to avoid interfering with any programs that might use
these names for other things.

-traditional
Attempts to support some aspects of traditional C compilers. Specifically:

* All extern declarations take effect globally even if they are written inside of a function
definition. This includes implicit declarations of functions.

* The keywords typeof, inline, signed, const, and volatile are not recognized.

* Comparisons between pointers and integers are always allowed.

* Integer types unsigned short and unsigned char promote to unsigned int.

* Out-of-range floating point literals are not an error.

* All automatic variables not declared register are preserved by longjmp(3C). Ordinarily, GNU
C follows ANSI C: automatic variables not declared volatile may be clobbered.

* In the preprocessor, comments convert to nothing at all, rather than to a space. This allows
traditional token concatenation.

* In the preprocessor, macro arguments are recognized within string constants in a macro
definition (and their values are stringified, though without additional quote marks, when they
appear in such a context). The preprocessor always considers a string constant to end at a
newline.

* The predefined macro __STDC__ is not defined when you use -traditional, but __GNUC__
is (since the GNU extensions which __GNUC__ indicates are not affected by -traditional). If
you need to write header files that work differently (depending upon whether -traditional is in
use) you can distinguish four situations by testing both of these predefined macros: GNU C,
traditional GNU C, other ANSI C compilers, and other old C compilers.

POSIX.WRI -- Page 11

-O
Optimizes. Optimizing compilation takes somewhat more time and a lot more memory for a
large function.

Without -O, the compiler's goal is to reduce the cost of compilation and to make debugging
produce the expected results. Statements are independent--if you stop the program with a
breakpoint between statements, you can then assign a new value to any variable or change the
program counter to any other statement in the function and get exactly the results you would
expect from the source code.

Without -O, only variables declared register are allocated in registers. The resulting compiled
code is a little worse than produced by PCC without -O.

With -O, the compiler tries to reduce code size and execution time.

Some of the -f options described below turn specific kinds of optimization on or off.
-g

Produces debugging information in the operating system's native format (for dbx or sdb). gdb
also can work with this debugging information.

Unlike most other C compilers, GNU CC allows you to use -g with -O. The shortcuts taken by
optimized code may occasionally produce surprising results--some variables you declared may
not exist at all; flow of control may briefly move where you did not expect it; some statements
may not be executed because they compute constant results or their values were already at hand;
some statements may execute in different places because they were moved out of loops.
Nevertheless, it proves possible to debug optimized output. This makes it reasonable to use the
optimizer for programs that might have bugs.

-w
Inhibits all warning messages.

-W
Prints extra warning messages for the following events.

* An automatic variable is used without first being initialized.

These warnings are possible only in optimizing compilation, because they require data flow
information that is computed only when optimizing. If you do not specify -O, you simply will
not get these warnings.

These warnings occur only for variables that are candidates for register allocation. Therefore,
they do not occur for a variable that is declared volatile; or whose address is taken; or whose size
is other than 1, 2, 4 or 8 bytes. Also, they do not occur for structures, unions, or arrays, even
when they are in registers.

Note that there may be no warning about a variable that is used only to compute a value that itself
is never used, because such computations may be deleted by data flow analysis before the
warnings are printed.

POSIX.WRI -- Page 12

These warnings are made optional because GNU CC is not smart enough to see all the reasons
why the code might be correct despite appearing to have an error. Here is one example of how
this can happen:

{
\ \ int x;
\ \ switch (y)
\ \ \ \ {
\ \ \ \ case 1: x = 1;
\ \ \ \ \ \ break;
\ \ \ \ case 2: x = 4;
\ \ \ \ \ \ break;
\ \ \ \ case 3: x = 5;
\ \ \ \ }
\ \ foo (x);
}

If the value of y is always 1, 2, or 3, then x is always initialized; however, GNU CC does not
know this. The following example demonstrates another common case.

{
\ \ int save_y;
\ \ if (change_y) save_y = y, y = new_y;
\ \ ...
\ \ if (change_y) y = save_y;
}

This has no bug because save_y is used only if it is set.
Some spurious warnings can be avoided if you declare as volatile all the functions you use that
never return.

* A nonvolatile automatic variable might be changed by a call to longjmp(3C). These warnings
are possible only in optimizing compilation.

The compiler sees only the calls to setjmp(3C). It cannot know where longjmp(3C) will be
called; in fact, a signal handler could call it at any point in the code. As a result, you may get a
warning even when there is, in fact, no problem because longjmp(3C) cannot, in fact, be called at
the place that would cause a problem.

* A function can return either with or without a value. (Falling off the end of the function body
is considered returning without a value.) For example, the following function would evoke such
a warning.

foo (a)
{
\ \ if (a > 0)
\ \ \ \ return a;
}

Spurious warnings can occur because GNU CC does not realize that certain functions (including
abort(3C) and longjmp(3C)) will never return.

* An expression statement contains no side effects.

In the future, other useful warnings also may be enabled by this option.

-Wimplicit

POSIX.WRI -- Page 13

Warns whenever a function is implicitly declared.

POSIX.WRI -- Page 14

-Wreturn-type
Warns whenever a function is defined with a return-type that defaults to int. Also warns about
any return statement with no return-value in a function whose return-type is not void.

-Wunused
Warns whenever a local variable is unused aside from its declaration and whenever a function is
declared static but never defined.

-Wswitch
Warns whenever a switch statement has an index of enumeral type and lacks a case for one or
more of the named codes of that enumeration. (The presence of a default label prevents this
warning.) case labels outside the enumeration range also provoke warnings when this option is
used.

-Wcomment
Warns whenever a comment-start sequence /* appears in a comment.

-Wtrigraphs
Warns if any trigraphs are encountered (assuming they are enabled).

-Wall
All of the above -W options combined. These are all the options that pertain to usage which we
do not recommend and that we believe is always easy to avoid, even in conjunction with macros.
The other -W... options below are not implied by -Wall because certain kinds of useful macros
are almost impossible to write without causing those warnings.

-Wshadow
Warns whenever a local variable shadows another local variable.

-Wid-clash-len
Warns whenever two distinct identifiers match in the first len characters. This may help you
prepare a program that will compile with certain obsolete, brain-damaged compilers.

-Wpointer-arith
Warns about anything that depends upon the size of a function type or of void. GNU C assigns
these types a size of 1 for convenience in making calculations with void * pointers and pointers to
functions.

-Wcast-qual
Warns whenever a pointer is cast so as to remove a type qualifier from the target type. For
example, warns if a const char * is cast to an ordinary char *.

-Wwrite-strings
Gives string constants the type const char[length] so that copying the address of one into a non-
const char * pointer will get a warning. At compile time, these warnings will help you find code
that can try to write into a string constant, but only if you have been very careful about using
const in declarations and prototypes. Otherwise, it will just be a nuisance; this is why we did not
make
-Wall request these warnings.

-p
Generates extra code to write profile information suitable for the analysis program prof(1).

POSIX.WRI -- Page 15

-pg
Generates extra code to write profile information suitable for the analysis program gprof(1).

-a
Generates extra code to write profile information for basic blocks, suitable for the analysis
program tcov(1). Eventually, GNU gprof(1) should be extended to process this data.

-llibrary
Searchs a standard list of directories for a library named library, which is actually a file named
liblibrary.a. The linker uses this file as if it had been specified precisely by name.

The directories searched include several standard system directories plus any that you specify
with -L.

Normally, the files found this way are library files--archive files whose members are object files.
The linker handles an archive file by scanning through it for members that define symbols which
have, so far, been referenced but not defined. But, if the file that is found is an ordinary object
file, it is linked in the usual fashion. The only difference between using an -l option and
specifying a file name is that -l searches several directories.

-Ldir
Adds directory dir to the list of directories to be searched for -l.

-nostdlib
Does not use the standard system libraries and startup files when linking. Only the files you
specify (plus gnulib) will be passed to the linker.

-mmachinespec
This is a machine-dependent option that specifies something about the type of target machine.
These options are defined by the macro TARGET_SWITCHES in the machine description. The
default for the options is also defined by that macro, which enables you to change the defaults.
The following -m options are defined in the 68000 machine description:

-m68020
-mc68020

Generates output for a 68020 (rather than a 68000). This is the default if you use the
unmodified sources.

-m68000
-mc68000

Generates output for a 68000 (rather than a 68020).

-m68881
Generates output containing 68881 instructions for floating point. This is the default if you
use the unmodified sources.

-mfpa
Generates output containing Sun FPA instructions for floating point.

-msoft-float
Generates output containing library calls for floating point.

-mshort

POSIX.WRI -- Page 16

Considers type int to be 16 bits wide, like short int.

POSIX.WRI -- Page 17

-mnobitfield
Does not use the bit-field instructions. -m68000 implies -mnobitfield.

-mbitfield
Does use the bit-field instructions. -m68020 implies -mbitfield. This is the default if you
use the unmodified sources.

-mrtd
Uses a different function-calling convention, in which functions that take a fixed number of
arguments return with the rtd instruction, which pops their arguments while returning.
This saves one instruction in the caller since there is no need to pop the arguments there.
This calling convention is incompatible with the one normally used on UNIX, so you
cannot use it if you need to call libraries compiled with the UNIX compiler.

Also, you must provide function prototypes for all functions that take variable numbers of
arguments (including printf(3S)); otherwise incorrect code will be generated for calls to
those functions.

In addition, seriously incorrect code will result if you call a function with too many
arguments. (Normally, extra arguments are harmlessly ignored.)

The rtd instruction is supported by the 68010 and 68020 processors but not by the 68000.

The following -m options are defined in the Vax machine description.

-munix
Does not output certain jump instructions (aobleq and so on) that the UNIX assembler for
the Vax cannot handle across long ranges.

-mgnu
Does output those jump instructions, on the assumption that you will assemble with the
GNU assembler.

-mg
Outputs code for g-format floating point numbers instead of d-format.

The following -m switches are supported on the Sparc.

-mfpu
Generates output containing floating point instructions. This is the default if you use the
unmodified sources.

-msoft-float
Generates output containing library calls for floating point.

-mno-epilogue
Generates separate return instructions for return statements. This has both advantages and
disadvantages.

POSIX.WRI -- Page 18

The following -m options are defined in the Convex machine description.

-mc1
Generates output for a C1. This is the default when the compiler is configured for a C1.

-mc2
Generates output for a C2. This is the default when the compiler is configured for a C2.

-margcount
Generates code that puts an argument count in the word preceding each argument list.
Some nonportable Convex and Vax programs need this word. (Debuggers do not; this
information is in the symbol table.)

-mnoargcount
Omits the argument count word. This is the default if you use the unmodified sources.

-fflag
Specifies machine-independent flags. Most flags have both positive and negative forms; for
example, the negative form of -ffoo would be -fno-foo. In the table below, only one of the forms
is listed--the one that is not the default. You can figure out the other form by either removing no-
or adding it.

-fpcc-struct-return
Uses the same convention for returning struct and union values that is used by the usual C
compiler on your system. This convention is less efficient for small structures; and, on many
machines, it fails to be reentrant. However, it has the advantage of allowing intercallability
between GCC-compiled code and PCC-compiled code.

-ffloat-store
Does not store floating-point variables in registers. This prevents undesirable excess precision on
machines such as the 68000 where the floating registers (of the 68881) keep more precision than
a double is supposed to have.

For most programs, the excess precision does only good; however, a few programs rely upon the
precise definition of IEEE floating point. Use -ffloat-store for such programs.

-fno-asm
Does not recognize asm, inline, or typeof as a keyword. These words may then be used as
identifiers. You can use __asm__, __inline__, and __typeof__ instead.

-fno-defer-pop
Always pops the arguments to each function call as soon as that function returns. Normally, the
compiler (when optimizing) lets arguments accumulate on the stack for several function calls and
pops them all at once.

-fstrength-reduce
Optimizes loop strength reduction and eliminates iteration variables.

-fcombine-regs
Allows the combine pass to combine an instruction that copies one register into another. This
might or might not produce better code when used in addition to -O.

POSIX.WRI -- Page 19

-fforce-mem
Forces memory operands to be copied into registers before doing arithmetic on them. This may
produce better code by making all memory references potential common subexpressions. When
they are not common subexpressions, instruction combination should eliminate the separate
register-load.

-fforce-addr
Forces memory address constants to be copied into registers before doing arithmetic on them.
This may produce better code just as -fforce-mem may.

-fomit-frame-pointer
Does not keep the frame pointer in a register for functions that do not need one. This avoids the
instructions to save, set up, and restore frame pointers. It also makes an extra register available in
many functions. It also makes debugging impossible.

On some machines, such as the Vax, this flag has no effect because the standard calling sequence
automatically handles the frame pointer and nothing is saved by pretending it does not exist. The
machine-description macro FRAME_POINTER_REQUIRED controls whether a target
machine supports this flag.

-finline-functions
Integrates all simple functions into their callers. The compiler heuristically decides which
functions are simple enough to be worth integrating in this way.

If all calls to a given function are integrated and the function is declared static, then the function
is normally not output as assembler code in its own right.

-fcaller-saves
Enables values to be allocated in registers that will be clobbered by function calls, by emitting
extra instructions to save and restore the registers around such calls. Such allocation is done only
when it seems to result in better code than would otherwise be produced.

This option is enabled by default on certain machines, usually those that have no call-preserved
registers to use instead.

-fkeep-inline-functions
Outputs a separate run-time callable version of the function, even if all calls to a given function
are integrated and the function is declared static.

-fwritable-strings
Stores string constants in the writable data segment and does not uniquize them. This is for
compatibility with old programs that assume they can write into string constants. Writing into
string constants is a very bad idea; constants should be constant.

-fcond-mismatch
Allows conditional expressions with mismatched types in the second and third arguments. The
value of such an expression is void.

-fno-function-cse
Does not put function addresses in registers; instead, it makes each instruction that calls a
constant function contain the function's address explicitly.

This option results in less efficient code, but some strange hacks that alter the assembler output

POSIX.WRI -- Page 20

may be confused by the optimizations performed when this option is not used.

-fvolatile
Considers all memory references through pointers to be volatile.

-fshared-data
Requests that the data and non-const variables of this compilation be shared data rather than
private data. The distinction makes sense only on certain operating systems, where shared data is
shared between processes running the same program, while private data exists in one copy per
process.

-funsigned-char
Lets the type char be the unsigned, like unsigned char.
Each kind of machine has a default for what char should be. It is either like unsigned char by
default or like signed char by default. (Actually, at present, the default is always signed.)
The type char is always a distinct type from either signed char or unsigned char, even though
its behavior is always just like one of those two.

Note that this is equivalent to -fno-signed-char, which is the negative form of -fsigned-char.

-fsigned-char
Lets the type char be signed, like signed char.

Note that this is equivalent to -fno-unsigned-char, which is the negative form of -funsigned-
char.

-fdelayed-branch
If supported for the target machine, attempts to reorder instructions to exploit instruction slots
available after delayed branch instructions.

-ffixed-reg
Treats the register named reg as a fixed register; generated code should never refer to it (except
perhaps as a stack pointer, frame pointer, or in some other fixed role).

reg must be the name of a register. The register names accepted are machine-specific and are
defined in the REGISTER_NAMES macro in the machine description macro file.

This flag does not have a negative form, because it specifies a three-way choice.

-fcall-used-reg
Treats the register named reg as an allocatable register that is clobbered by function calls. It may
be allocated for temporaries or variables that do not live across a call. Functions compiled this
way will not save and restore the register reg.

Use of this flag for a register that has a fixed pervasive role in the machine's execution model,
such as the stack pointer or frame pointer, will produce disastrous results.

This flag does not have a negative form, because it specifies a three-way choice.

POSIX.WRI -- Page 21

-fcall-saved-reg
Treats the register named reg as an allocatable register saved by functions. It may be allocated
even for temporaries or variables that live across a call. Functions compiled this way will save
and restore the register reg if they use it.

Use of this flag for a register that has a fixed pervasive role in the machine's execution model,
such as the stack pointer or frame pointer, will produce disastrous results.

A different sort of disaster will result from the use of this flag for a register in which function
values may be returned.

This flag does not have a negative form, because it specifies a three-way choice.

-dletters
Says to make debugging dumps at times specified by letters. The following list defines the
possible letters.

r Dump after RTL generation.
j Dump after first jump optimization.
J Dump after last jump optimization.
s Dump after CSE (including the jump optimization that sometimes follows CSE).
L Dump after loop optimization.
f Dump after flow analysis.
c Dump after instruction combination.
l Dump after local register allocation.
g Dump after global register allocation.
d Dump after delayed branch scheduling.
m Print statistics on memory usage, at the end of the run.

-pedantic
Issues all the warnings demanded by strict ANSI standard C; rejects all programs that use
forbidden extensions.

Valid ANSI standard C programs should compile properly with or without this option (though a
rare few will require -ansi). However, without this option, certain GNU extensions and
traditional C features are supported as well. With this option, they are rejected. There is no
reason to use this option; it exists only to satisfy pedants.

-pedantic does not cause warning messages for use of the alternate keywords whose names begin
and end with __.

-static
On Suns running version 4, this prevents linking with the shared libraries. (-g has the same
effect.)
These options control the C preprocessor, which is run on each C source file before actual
compilation. If you use the '-E' option, nothing is done except C preprocessing. Some of these
options make sense only together with '-E' because they request preprocessor output that is not
suitable for actual compilation.

-C
Tells the preprocessor not to discard comments. Used with the -E option.

-Idir

POSIX.WRI -- Page 22

Searchs directory dir for include files.

-I-
Searches any directories specified with -I options before the -I- option only for the case of
#include "file"; they are not searched for #include <file>.

If additional directories are specified with -I options after the -I-, searches these directories for all
#include directives. (Ordinarily all -I directories are used this way.)

In addition, the -I- option inhibits the use of the current directory as the first search directory for
#include "file". Therefore, the current directory is searched only if it is requested explicitly with
-I.. Specifying both -I- and -I. allows you to control precisely which directories are searched
before the current one and which are searched after.

-nostdinc
Does not search the standard system directories for header files. Only the directories you have
specified with -I options (and the current directory, if appropriate) are searched.

Between -nostdinc and -I-, you can eliminate all directories from the search path except those
you specify.

-M
Tells the preprocessor to output a rule suitable for make(1) describing the dependencies of each
source file. For each source file, the preprocessor outputs one make-rule whose target is the
object file name for that source file and whose dependencies are all the files #included in it. This
rule may be a single line or, if it is long, may be continued with \\-newline.

-M implies -E.

-MM
Like -M but the output mentions only the user-header files included with #include "file".
System header files included with #include <file> are omitted.

-MM implies -E.

-Dmacro
Defines macro macro with the empty string as its definition.

-Dmacro=defn
Defines macro macro as defn.

-Umacro
Undefines macro macro.

-trigraphs
Supports ANSI C trigraphs. You do not want to know about this brain damage. The -ansi option
also has this effect.

POSIX.WRI -- Page 23

FILES
file.c C source file
file.s assembly language file
file.o object file
a.out link edited output
/tmp/cc* temporary files
/usr/libexec/cpp preprocessor
/usr/libexec/ccl compiler
/usr/lib/libgnulib.a library needed by GCC on some machines
/usr/lib/crt0.o start-up routine
/usr/lib/libc.a standard C library, see intro(3)
/usr/include standard directory for #include files

BUGS
Bugs should be reported to bug-gcc@prep.ai.mit.edu. Bugs actually tend to get fixed if they can be
isolated, so it is in your interest to report them in such a way that they can be easily reproduced.

COPYING
Copyright © 1988 Free Software Foundation, Inc.

Permission is granted to make and distribute verbatim copies of this manual provided the copyright notice
and this permission notice are preserved on all copies.

Permission is granted to copy and distribute modified versions of this manual under the conditions for
verbatim copying, provided that the entire resulting derived work is distributed under the terms of a
permission notice identical to this one.

Permission is granted to copy and distribute translations of this manual into another language, under the
above conditions for modified versions, except that this permission notice may be included in translations
approved by the Free Software Foundation instead of in the original English.

AUTHORS
See the GNU CC Manual for the contributors to GNU CC.

POSIX.WRI -- Page 24

NAME
chmod -- change file modes

SYNOPSIS
chmod [-R] mode file ...

DESCRIPTION
The chmod utility modifies the file mode bits of the listed files as specified by the mode operand.
The options follow.

-R
Traverses a file hierarchy. For each file that is of type directory, chmod changes the mode of all
files in the file hierarchy below it followed by the mode of the directory itself.
Symbolic links are not indirected through nor are their modes altered.

Only the owner of a file or the superuser is permitted to change the mode of a file.
The chmod utility exits 0 on success and >0 if an error occurs.

MODES
Modes may be absolute or symbolic. An absolute mode is an octal number constructed by oring the
following values.

4000
set-user-ID-on-execution

2000
set-group-ID-on-execution

1000
sticky bit, see chmod(2)

0400
read by owner

0200
write by owner

0100
execute (or search for directories) by owner

0070
read, write, execute/search by group

0007
read, write, execute/search by others

The read, write, and execute/search values for group and others are encoded as described for owner.

POSIX.WRI -- Page 25

The symbolic mode is described by the following grammar.

mode ::= clause [, clause ...]
clause ::= [who ...] [action ...] last_action
action ::= op [perm ...]
last_action ::= op [perm ...]
who ::= a | u | g | o
op ::= + | - | =
perm ::= r | s | t | w | X | x | u | g | o

The who symbols "u", "g", and "o" specify the user, group, and other parts of the mode bits, respectively.
The who symbol "a" is equivalent to "ugo".

The perm symbols represent the portions of the mode bits, as follows.

r
The read bits.

s
The set-user-ID-on-execution and set-group-ID-on-execution bits.

t
The sticky bit.

w
The write bits.

x
The execute/search bits.

X
The execute/search bits if the file is a directory or if any of the execute/search bits are set in the
original (unmodified) mode. Operations with the perm symbol "X" are only meaningful in
conjunction with the op symbol "+"; it is ignored in all other cases.

The op symbols represent the operation performed, as follows.
+

If no value is supplied for perm, the "+" operation has no effect. If no value is supplied for who,
each permission bit specified in perm (for which the corresponding bit in the file mode creation
mask is clear) is set. Otherwise, the mode bits represented by the specified who and perm values
are set.

-
If no value is supplied for perm, the "-" operation has no effect. If no value is supplied for who,
the mode bits represented by perm are cleared for the owner, group, and other permissions.
Otherwise, the mode bits represented by the specified who and perm values are cleared.

=
The mode bits specified by the who value are cleared; or, if no who value is specified, the owner,
group, and other mode bits are cleared. Then, if no value is supplied for who, each permission bit
specified in perm (for which the corresponding bit in the file mode creation mask is clear) is set.
Otherwise, the mode bits represented by the specified who and perm values are set.

Each clause specifies one or more operations to be performed on the mode bits, and each operation is
applied to the mode bits in the order specified.

Operations upon the other permissions only (specified by the symbol "o" by itself), in combination with
the perm symbols "s" or "t", are ignored.

POSIX.WRI -- Page 26

EXAMPLES
644

Makes a file readable by anyone and writable by the owner only.
go-w

Denies write permission to group and others.
=rw,+X

Sets the read and write permissions to the usual defaults but retain any execute permissions that
are currently set.

+X
Makes a directory or file searchable/executable by everyone if it is already searchable/executable
by anyone.

755
u=rwx,go=rx
u=rwx,go=u-w

Makes a file readable/executable by everyone and writeable by the owner only.
go=

Clears all mode bits for group and others.
g=u-w

Sets the group bits equal to the user bits but clears the group write bit.

BUGS
There is no perm option for the naughty bits.

STANDARDS
The chmod utility is expected to be POSIX 1003.2-compatible with the exception of the perm symbols t
and X, which are not included in that standard.

POSIX.WRI -- Page 27

NAME
cp -- copy files

SYNOPSIS
cp [-R] [-f] [-h] [-i] [-p] source_file target_file
cp [-R] [-f] [-h] [-i] [-p] source_file ... target_directory

DESCRIPTION
In the first synopsis form, the cp utility copies the contents of the source_file to the target_file. In the
second synopsis form, the contents of each named source_file is copied to thedestination target_directory.
The names of the files themselves are not changed. If cp detects an attempt to copy a file to itself, the
copy will fail.

The following options are available.
-R

If source_file designates a directory, cp copies the directory and the entire subtree connected at
that point. This option also causes symbolic links to be copied, rather than indirected through,
and for cp to create special files rather than copying them as normal files. Created directories
have the same mode as the corresponding source directory, unmodified by the process' umask.

-f
For each existing destination pathname, removes it and creates a new file, without prompting for
confirmation regardless of its permissions. (The -i option is ignored if the -f option is specified.)

-h
Forces cp to follow symbolic links. Provided for the -R option, which does not follow symbolic
links by default.

-i
Causes cp to write a prompt to standard error before copying a file that would overwrite an
existing file. If the response from the standard input begins with the character "y'', the file is
copied if permissions allow the copy.

-p
Causes cp to preserve in the copy as many of the modification times, access times, file modes,
user IDs, and group IDs as allowed by permissions.

If the user ID and group ID cannot be preserved, no error message is displayed and the exit value is not
altered.

If the source file has its set user ID bit on and the user ID cannot be preserved, the set user ID bit is not
preserved in the copy's permissions. If the source file has its set group ID bit on and the group ID cannot
be preserved, the set group ID bit is not preserved in the copy's permissions. If the source file has both
the set user ID and set group ID bits on and either the user ID or group ID cannot be preserved, neither
the set user ID nor the set group ID bits are preserved in the copy's permissions.

For each destination file that already exists, its contents are overwritten if permissions allow; but its
mode, user ID, and group ID are unchanged.

If the destination file does not exist, the mode of the source file is used as modified by the file mode
creation mask (see sh). If the source file has its set user ID bit on, that bit is removed unless both the
source file and the destination file are owned by the same user.

If the source file has its set group ID bit on, that bit is removed unless both the source file and the
destination file are in the same group and the user is a member of that group. If both the set user ID and
set group ID bits are set, all of the above conditions must be fulfilled or both bits are removed.

POSIX.WRI -- Page 28

Appropriate permissions are required for file creation or overwriting.

Symbolic links are followed unless the -R option is specified, in which case the link itself is copied.

cp exits 0 on success; >0 if an error occurred.

HISTORY
The cp command is expected to be POSIX 1003.2 compatible.

POSIX.WRI -- Page 29

NAME
find -- walk a file hierarchy

SYNOPSIS
find [-d] [-s] [-X] [-x] [-f file] file ... expression

DESCRIPTION
find recursively descends the directory tree for each file listed, evaluating an expression (composed of the
"primaries" and "operands" listed below) in terms of each file in the tree.

If file is a symbolic link referencing an existing file, the directory tree referenced by the link is descended
instead of the link itself.

The options follow.
-d

The -d option causes find to perform a depth-first traversal; i.e., directories are visited in post-
order and all entries in a directory will be acted upon before the directory itself. By default, find
visits directories in preorder; i.e., before their contents. Note that the default is not a breadth-first
traversal.

-f
The -f option specifies a file hierarchy for find to traverse. File hierarchies also may be specified
as the operands immediately following the options.

-s
The -s option causes the file information and file type, returned for each symbolic link, to be
those of the file referenced by the link, not the link itself. If the referenced file does not exist, the
file information and type will be for the link itself.

-X
The -X option is a modification to permit find to be safely used in conjunction with xargs(1). If a
file name contains any of the delimiting characters used by xargs, a diagnostic message is
displayed on standard error and the file is skipped. The delimiting characters include single (" ' ")
and double (" " ") quotes, backslash ("\"), space, tab, and newline characters.

-x
The -x option prevents find from descending into directories that have a device number different
than that of the file from which the descent began.

PRIMARIES
-atime n

True, if the difference between the file last access time and the time find was started (rounded up
to the next full 24-hour period) is n 24-hour periods.

-ctime n
True, if the difference between the time of last change of file status information and the time find
was started (rounded up to the next full 24-hour period) is n 24-hour periods.

-exec utility [argument ...] ;
True, if the program named utility returns a zero value as its exit status. Optional arguments may
be passed to the utility. The expression must be terminated by a semicolon (";"). If the string
"{}" appears anywhere in the utility name or the arguments, it is replaced by the pathname of the
current file. utility will be executed from the directory from which IfIiInId was executed.

-fstype type
True, if the file is contained in a file system of type type. Currently supported types are "local",
"mfs", "nfs", "pc", "rdonly", and "ufs". The types "local" and "rdonly" are not specific file system
types. The former matches any file system physically mounted on the system where the find is
being executed, and the latter matches any file system which is mounted read-only.

POSIX.WRI -- Page 30

-group gname
True, if the file belongs to the group gname. If gname is numeric and there is no such group
name, then gname is treated as a group id.

-inum n
True, if the file has inode number n.

-links n
True, if the file has n links.

-ls
This primary always evaluates to true. The following information for the current file is written to
standard output: its inode number, size in 512-byte blocks, file permissions, number of hard
links, owner, group, size in bytes, last modification time, and pathname. If the file is a block or
character-special file, the major and minor numbers will be displayed instead of the size in bytes.
If the file is a symbolic link, the pathname of the linked-to file will be displayed preceded by "-
>". The format is identical to that produced by "ls -dgils".

-mtime n
True, if the difference between the file last modification time and the time find was started
(rounded up to the next full 24-hour period) is n 24-hour periods.

-ok utility [argument ...] ;
The -ok primary is identical to the -exec primary with the exception that find requests user
affirmation for executing the utility by printing a message to the terminal and reading a response.
If the response is other than "y", the command is not executed and the value of the -ok expression
is false.

-name pattern
True, if the last component of the pathname being examined matches pattern. Special shell
pattern matching characters ("[", "]", "*", and "?") may be used as part of pattern. These
characters may be matched explicitly by escaping them with a backslash ("\").

-newer file
True, if the current file has a more recent last modification time than file.

-nouser
True, if the file belongs to an unknown user.

-nogroup
True, if the file belongs to an unknown group.

-path pattern
True, if the pathname being examined matches pattern. Special shell pattern matching characters
("[", "]", "*", and "?") may be used as part of pattern. These characters may be matched
explicitly by escaping them with a backslash ("\"). Slashes ("/") are treated as normal characters
and do not need to be matched explicitly.

-perm mode
The mode may be either symbolic (see chmod) or an octal number. If the mode is symbolic, a
starting value of zero is assumed and the mode sets or clears permissions without regard to the
process' file mode creation mask. If the mode is octal, only bits 07777 (S_ISUID|S_ISGID|
S_ISTXT|S_IRWXU|S_IRWXG|S_IRWXO) of the file's mode bits participate in the comparison. If
the mode is preceded by a dash ("-"), this primary evaluates to true if at least all of the bits in the
mode are set in the file's mode bits. If the mode is not preceded by a dash, this primary evaluates
to true if the bits in the mode exactly match the file's mode bits. Note that the first character of a
symbolic mode may not be a dash ("-").

-print
This primary always evaluates to true. It prints the pathname of the current file to standard
output. The expression is appended to the user specified expression if neither -exec, -ls, nor -ok
is specified.

-prune
This primary always evaluates to true. It causes find to not descend into the current file. Note
that the -prune primary has no effect if the -d option was specified.

POSIX.WRI -- Page 31

-size n[c]
True, if the file's size (rounded up in 512-byte blocks) is n. If n is followed by a "c", then the
primary is true if the file's size is n bytes.

-type t
True, if the file is of the specified type. Possible file types follow.

b block special
c character special
d directory
f regular file
l symbolic link
p FIFO
s socket

-user uname
True, if the file belongs to the user uname. If uname is numeric and there is no such user name,
then uname is treated as a user id.

All primaries which take a numeric argument allow the number to be preceded by a plus sign ("+") or a
minus sign ("-"). A preceding plus sign means "more than n"; a preceding minus sign means "less than
n"; and neither sign means "exactly n".

OPERATORS
The primaries may be combined using the following operators. The operators are listed in order of
decreasing precedence.

(expression)
This evaluates to true if the parenthesized expression evaluates to true.

!expression
This is the unary NOT operator. It evaluates to true if the expression is false.

expression -and expression
expression expression

The -and operator is the logical AND operator. As it is implied by the juxtaposition of two
expressions, it does not need to be specified. The expression evaluates to true if both expressions
are true. The second expression is not evaluated if the first expression is false.

expression -or expression
The -or operator is the logical OR operator. The expression evaluates to true if either the first or
the second expression is true. The second expression is not evaluated if the first expression is
true.

All operands and primaries must be separate arguments to find. Primaries which themselves take
arguments expect each argument to be a separate argument to find.

POSIX.WRI -- Page 32

EXAMPLES
The following examples are shown as given to the shell.

find / \! -name "*.c" -print
Prints out a list of all the files whose names do not end in ".c".

find / -newer ttt -user wnj -print
Prints out a list of all the files owned by user "wnj" that are newer than the file "ttt".

find / \! \(-newer ttt -user wnj \)
Prints out a list of all the files that are not both newer than "ttt" and owned by "wnj".

find / \(-newer ttt -or -user wnj \)
Prints out a list of all the files that are either owned by "wnj" or that are newer than "ttt".

STANDARDS
The find utility syntax is a superset of the syntax specified by the POSIX 1003.2 standard.

The -s and -X options and the -inum and -ls primaries are extensions to POSIX 1003.2.

Historically, the -d, -s, and -x options were implemented using the primaries "-depth", "-follow", and "-
xdev". These primaries always evaluated to true. As they were really global variables that took effect
before the traversal began, some legal expressions could have unexpected results. An example is the
expression "-print -o -depth". As -print always evaluates to true, the standard order of evaluation implies
that -depth would never be evaluated. This is not the case.

The operator "-or" was implemented as "-o", and the operator "-and" was implemented as "-a".
Historic implementations of the -exec and -ok primaries did not replace the string "{}" in the utility name
or the utility arguments if it had preceding or following nonwhitespace characters. This version replaces
it no matter where in the utility name or arguments it appears.

BUGS
The special characters used by find also are special characters to many shell programs. In particular, the
characters "*", "[", "]", "?", "(", ")", "!", "\", and ";" may have to be escaped from the shell.

As there is no delimiter separating options and file names or file names and the expression, it is difficult
to specify files named "-xdev" or "!". These problems are handled by the -f option and the getopt(3) "--"
construct.

POSIX.WRI -- Page 33

NAME
ln -- make links

SYNOPSIS
ln [-s] source_file target_file
ln [-s] source_file ... target_directory

DESCRIPTION
The ln utility creates a new directory entry (linked file), which inherits the same modes as the orginal file.
It is useful for maintaining multiple copies of a file in many places at once--without the "copies"; instead,
a link 'points' to the original copy. There are two types of links: hard links and symbolic links. How a
link 'points' to a file is one of the differences between a hard or symbolic link.

Option available:
-s

Create a symbolic link.

By default ln makes hard links. A hard link to a file is indistinguishable from the original directory entry;
any changes to a file are effective independent of the name used to reference the file. Hard links may not
refer to directories (unless the proper incantations are supplied) and may not span file systems.

A symbolic link contains the name of the file to which it is linked. The referenced file is used when an
open(2) operation is performed on the link. A stat(2) on a symbolic link will return the linked-to file; an
lstat(2) must be done to obtain information about the link. The readlink(2) call may be used to read the
contents of a symbolic link. Symbolic links may span file systems and may refer to directories.

Given one or two arguments, ln creates a link to an existing file source_file. If target_file is given, the
link has that name; target_file may also be a directory in which to place the link; otherwise it is placed in
the current directory. If only the directory is specified, the link will be made to the last component of
source_file.

Given more than two arguments, ln makes links in target_directory to all the named source files. The
links made will have the same name as the files being linked to.

HISTORY
An ln command appeared in Sixth Edition AT&T UNIX.

POSIX.WRI -- Page 34

NAME
ls -- list directory contents.

SYNOPSIS
ls [-ACFLRTacdfgiklqrstu1] file ...

DESCRIPTION
For each operand that names a file of a type other than directory, ls displays its name as well as any
requested, associated information. For each operand that names a file of type directory, ls displays the
names of files contained within that directory, as well as any requested, associated information.

If no operands are given, the contents of the current directory are displayed. If more than one operand is
given, nondirectory operands are displayed first; directory and nondirectory operands are sorted
separately and in lexicographical order.

The following options are available.
-A

Lists all entries except for "." and "..". Always set for the superuser.
-C

Forces multicolumn output; this is the default when output is to a terminal.
-F

Displays a slash (/) immediately after each pathname that is a directory, an asterisk (*) after each
that is executable, and an at sign (@) after each symbolic link.

-L
If argument is a symbolic link, lists the file or directory the link references rather than the link
itself.

-R
Recursively lists subdirectories encountered.

-T
Displays complete time information for the file, including month, day, hour, minute, second, and
year.

-a
Includes directory entries whose names begin with a dot (.).

-c
Uses time when file status was last changed for sorting or printing.

-d
Lists directories as plain files (not searched recursively).

-f
Does not sort output.

-g
Includes the group ownership of the file in a long "l" output "lg". If the group is not a known
group name, the numeric ID is printed.

-i
For each file, prints the file's file serial number (inode number).

-k
Modifies the -s option, causing the sizes to be reported in kilobytes.

-l
(The lowercase letter "ell.") Lists in long format. (See below.) If the output is to a terminal, a
total sum for all the file sizes is output on a line before the long listing.

-q
Forces printing of nongraphic characters in file names as the character '?'; this is the default when
output is to a terminal.

POSIX.WRI -- Page 35

-r
Reverses the order of the sort to get reverse lexicographical order or the oldest entries first.

-s
Displays the number of file system bytes actually used by each file, in units of 512, where partial
units are rounded up to the next integer value. If the output is to a terminal, a total sum for all the
file sizes is output on a line before the listing.

-t
Sort by time modified (most recently modified first) before sorting the operands by
lexicographical order.

-u
Uses time of last access, instead of last modification of the file for sorting "t" or printing "l".

-1
(The numeric digit "one.") Forces output to be one entry per line. This is the default when output
is not to a terminal.

The -1, -C, and -l options all override each other; the last one specified determines the format used.
The -c and -u options override each other; the last one specified determines the file time used.

By default, ls lists one entry per line to standard output; the exceptions are to terminals or when the
-C option is specified.

File information is displayed with one or more blanks separating the information associated with
the -i, -s, and -l options.

THE LONG FORMAT
If the -l option is given, the following information will be displayed: file mode, number of links, owner
name, number of bytes in the file, abbreviated month, day-of-month file was last modified, hour file last
modified, minute file last modified, and the pathname.

If the owner name is not a known user name, the numeric ID is displayed.

If the file is a character-special or block-special file, the major and minor device numbers for the file are
displayed in the size field. If the file is a symbolic link, the pathname of the linked-to file is preceded
by "->".

The file mode printed under the -l option consists of the the entry type, owner permissions, and group
permissions. The entry type character describes the type of file, as follows.

b Block special file.
c Character special file.
d Directory.
l Symbolic link.
s Socket link.
- Regular file.

The next three fields are three characters each: owner permissions, group permissions, and other
permissions. Each field has three character positions.

If r, the file is readable; if -, it is not readable.
If w, the file is writable; if -, it is not writable.

POSIX.WRI -- Page 36

The first of the following applies.
S If in the owner permissions, the file is not executable and set-user-ID mode is set. If in

the group permissions, the file is not executable and set-group-ID mode is set.

s If in the owner permissions, the file is executable and set-user-ID mode is set. If in the
group permissions, the file is executable and set-group-ID mode is set.

x The file is executable or the directory is searchable.

- The file is neither readable, writeable, exectutable, nor set-user-ID nor set-group-ID mode
nor sticky. (See below.)

These next two apply only to the third character in the last group (other permissions).

T The sticky bit is set (mode 1000) but is not executable nor contains search permission.
(See chmod(1) or sticky(8).)

t The sticky bit is set (mode 1000) and is searchable or executable. (See chmod(1) or
sticky(8).)

The ls utility exits 0 on success, and >0 if an error occurs.

ENVIRONMENT
The following environment variables affect the execution of ls:

COLUMNS
If this variable contains a string representing a decimal integer, it is used as the column position
width for displaying multiple- text-column output. The ls utility calculates how many pathname
text columns to display based on the width provided. (See -C.)

HISTORY
An ls command appeared in Sixth Edition AT&T UNIX.

POSIX.WRI -- Page 37

NAME
make -- maintain program dependencies

SYNOPSIS
make [-eiknqrstv] [-D variable] [-d flags] [-f makefile]
[-I directory] [-j max_jobs] [variable=value ...] target ...

DESCRIPTION
make is a program designed to simplify the maintenance of other programs. Its input is a list of
specifications as to the files upon which programs and other files depend. If the file "makefile" exists, it
is read for this list of specifications. If it does not exist, the file "Makefile" is read. If the file ".depend"
exists, it is read. This manual page is intended as a reference document only.

The options follow.
-D variable

Defines variable to be 1, in the global context.
-d flags

Turns on debugging and specifies which portions of make are to print debugging information.
flags is one or more of the following:

A Prints all possible debugging information; equivalent to specifying all of the
debugging flags.

a Prints debugging information about archive searching and caching.

c Prints debugging information about conditional evaluation.

d Prints debugging information about directory searching and caching.

g1 Prints the input graph before making anything.

g2 Prints the input graph after making everything or before exiting on error.

j Prints debugging information about running multiple shells.

m Prints debugging information about making targets, including modification
dates.

s Prints debugging information about suffix-transformation rules.

t Prints debugging information about target list maintenance.

v Prints debugging information about variable assignment.

-e Specifies that environmental variables override macro assignments within
makefiles.

-f makefile Specifies a makefile to read instead of the default "makefile" and "Makefile".
If makefile is -, standard input is read. Multiple makefiles may be specified
and are read in the order specified.

-I directory Specifies a directory in which to search for makefiles and included makefiles.
The system makefile directory is automatically included as part of this list.

POSIX.WRI -- Page 38

-i Ignores nonzero exit of shell commands in the makefile. Equivalent to
specifying - before each command line in the makefile.

-j max_jobs Specifies the maximum number of jobs that make may have running at any one
time.

-k Continues processing after errors are encountered but only on those targets that
do not depend upon the target whose creation caused the error.

-n Displays the commands that would have been executed, but do not actually
execute them.

-q Does not execute any commands but does exit 0 if the specified targets are up to
date; otherwise, it specifies 1.

-r Does not use the built-in rules specified in the system makefile.

-s Does not echo any commands as they are executed. Equivalent to specifying
_B@ before each command line in the makefile.

-t Rather than rebuilding a target as specified in the makefile, creates it or updates
its modification time to make it appear up to date.

variable=value
Set the value of the variable variable to value.

There are six different types of lines in a makefile: file dependency specifications, shell commands,
variable assignments, include statements, conditional directives, and comments.

In general, lines may be continued from one line to the next by ending them with a backslash ("\"). The
trailing newline character and initial whitespace on the following line are compressed into a single space.

FILE DEPENDENCY SPECIFICATIONS
Dependency lines consist of one or more targets, an operator, and zero or more sources. This creates a
relationship where the targets "depend" upon the sources and are usually created from them. The exact
relationship between the target and the source is determined by the operator that separates them. The
three operators are as follows:

:
A target is considered out of date if its modification time is less than those of any of its sources.
Sources for a target accumulate over dependency lines when this operator is used. The target is
removed if make is interrupted.

!
Targets are always re-created but not until all sources have been examined and re-created as
necessary. Sources for a target accumulate over dependency lines when this operator is used.
The target is removed if make is interrupted.

::
If no sources are specified, the target is always re-created. Otherwise, a target is considered out
of date if any of its sources has been modified more recently than the target. Sources for a target
do not accumulate over dependency lines when this operator is used. The target will not be
removed if make is interrupted.

POSIX.WRI -- Page 39

Targets and sources may contain the shell wildcard values "?", "*", "[]", and "{}". The values "?", "*",
and "[]" may only be used as part of the final component of the target or source and must be used to
describe existing files. The value "{}" need not necessarily be used to describe existing files. Expansion
is in directory order not alphabetically as done in the shell.

SHELL COMMANDS
Each target may have associated with it a series of shell commands, normally used to create the target.
Each of the commands in this script must be preceded by a tab. While any target may appear on a
dependency line, only one of these dependencies may be followed by a creation script, unless the "::"
operator is used.

If the first or first two characters of the command line are "@" and/or "-", the command is treated
specially. A "@" causes the command not to be echoed before it is executed. A "-" causes any nonzero
exit status of the command line to be ignored.

VARIABLE ASSIGNMENTS
Variables in make are much like variables in the shell; and, by tradition, consist of all uppercase letters.
The five operators that can be used to assign values to variables are as follows:

=
Assigns the value to the variable. Any previous value is overridden.

+=
Appends the value to the current value of the variable.

?=
Assigns the value to the variable if it is not already defined.

:=
Assigns with expansion, i.e., expands the value before assigning it to the variable. Normally,
expansion is not done until the variable is referenced.

!=
Expands the value and passes it to the shell for execution and assigns the result to the variable.
Any newlines in the result are replaced with spaces.

Any white-space before the assigned value is removed; if the value is being appended, a single space is
inserted between the previous contents of the variable and the appended value.

Variables are expanded by surrounding the variable name with either curly braces ("{}") or parentheses
("()") and preceding it with a dollar sign ("$"). If the variable name contains only a single letter, the
surrounding braces or parentheses are not required. This shorter form is not recommended.

Variable substitution occurs at two distinct times, depending upon where the variable is being used.
Variables in dependency lines are expanded as the line is read. Variables in shell commands are expanded
when the shell command is executed.

The four different classes of variables (in order of increasing precedence) are:

Environment variables
Variables defined as part of make's environment.

Global variables
Variables defined in the makefile or in included makefiles.

Command line variables
Variables defined as part of the command line.

POSIX.WRI -- Page 40

Local variables
Variables that are defined specific to a certain target. The seven local variables are as follows:

.ALLSRC The list of all sources for this target; also known as ">".

.ARCHIVE The name of the archive file.

.IMPSRC The name/path of the source from which the target is to be transformed (the
"implied" source); also known as "<".

.MEMBER The name of the archive member.

.OODATE The list of sources for this target that were deemed out of date; also known as
"?".

.PREFIX The file prefix of the file, containing only the file portion, no suffix or
preceding directory components; also known as "*".

.TARGET The name of the target; also known as "@". The shorter forms "@", "?", ">",
and "*" are permitted for backward compatibility with historical makefiles and
are not recommended. The six variables "@F", "@D", "<F", "<D", "*F", and
"*D" are permitted for compatibility with AT&T System V makefiles and are
not recommended.

 Four of the local variables may be used in sources on dependency lines because
they expand to the proper value for each target on the line. These variables are
".TARGET", ".PREFIX", ".ARCHIVE", and ".MEMBER".

In addition, make sets or knows about the following variables:

$
A single dollar sign "$", i.e. "$$" expands to a single dollar sign.

.MAKE
The name that make was executed with (argv[0]).

.CURDIR
A path to the directory where make was executed.

MAKEFLAGS
The environment variable "MAKEFLAGS" may contain anything that may be specified on
make's command line. Anything specified on make's command line is appended to the
"MAKEFLAGS" variable which is then entered into the environment for all programs which
make executes.

Variable expansion may be modified to select or modify each word of the variable (where a "word" is
white-space delimited sequence of characters). The general format of a variable expansion is:

 {variable[:modifier[:...]]}

Each modifier begins with a colon and one of the following special characters. The colon may be escaped
with a backslash ("\").

E
Replaces each word in the variable with its suffix.

H

POSIX.WRI -- Page 41

Replaces each word in the variable with everything but the last component.

M pattern
Selects only those words that match the rest of the modifier. The standard shell wildcard
characters ("*" and "?") may be used. The wildcard characters may be escaped with a backslash
("\").

N pattern
This is identical to M, but selects all words that do not match the rest of the modifier.

R
Replaces each word in the variable with everything but its suffix.

S /old_pattern/new_pattern/[g]
Modifies the first occurrence of old_pattern in each word to be replaced with new_pattern. If a g
is appended to the last slash of the pattern, all occurrences in each word are replaced. If
old_pattern begins with a caret ("^"), old_pattern is anchored at the beginning of each word. If
old_pattern ends with a dollar sign ("$"), it is anchored at the end of each word. Inside
new_string, an ampersand ("&") is replaced by old_pattern. Any character may be used as a
delimiter for the parts of the modifier string. The anchoring, ampersand, and delimiter characters
may be escaped with a backslash ("\").

Variable expansion occurs in the normal fashion inside both old_string and new_string with the
single exception that a backslash is used to prevent the expansion of a dollar sign ("$"), not a
preceding dollar sign as is usual.

T
Replaces each word in the variable with its last component.

old_string=new_string
This is the AT&T System V style variable substitution. It must be the last modifier specified.
old_string is anchored at the end of each word, so only suffixes or entire words may be replaced.

INCLUDE STATEMENTS AND CONDITIONALS
Makefile inclusion and conditional structures reminiscent of the C programming language are provided in
make. All such structures are identified by a line beginning with a single dot (".") character. Files are
included by either ".include <file>" or ".include "file"". Variables between the angle brackets or double
quotes are expanded to form the file name. If angle brackets are used, the included makefile is expected
to be in the system makefile directory. If double quotes are used, the including makefile's directory and
any directories specified using the -I option are searched before the system makefile directory.

Conditional expressions also are preceded by a single dot as the first chraracter of a line. The possible
conditionals are listed below.

.undef variable
Undefines the specified global variable. Only global variables may be undefined.

.if [!] expression [operator expression ...]
Tests the value of an expression.

.ifdef [!] variable [operator variable ...]
Tests the value of a variable.

.ifndef [!] variable [operator variable ...]
Tests the value of a variable.

.ifmake [!] target [operator target ...]
Tests the target being built.

POSIX.WRI -- Page 42

.ifnmake [!] target [operator target ...]
Tests the target being built.

.else
Reverses the sense of the last conditional.

.elif [!] expression [operator expression ...]
A combination of .else followed by .if.

.elifdef [!] variable [operator variable ...]
A combination of .else followed by .ifdef.

.elifndef [!] variable [operator variable ...]
A combination of .else followed by .ifndef.

.elifmake [!] target [operator target ...]
A combination of .else followed by .ifmake.

.elifnmake [!] target [operator target ...]
A combination of .else followed by .ifnmake.

.endif
Ends the body of the conditional.

The operator may be any one of the following:

|| logical OR
&& Logical AND; of higher precedence than ||.
As in C, make will only evaluate a conditional as far as is necessary to determine its value. Parentheses
may be used to change the order of evaluation. The boolean operator "!" may be used to logically negate
an entire conditional. It is of higher precendence than "&&".

The value of expression may be any of the following.

defined
Takes a variable name as an argument and evaluates to true if the variable has been defined.

make
Takes a target name as an argument and evaluates to true if the target was specified as part of
make's command line or was declared the default target (either implicitly or explicitly, see
.MAIN) before the line containing the conditional.

empty
Takes a variable, with possible modifiers, and evaluates to true if the expansion of the variable
would result in an empty string.

exists
Takes a file name as an argument and evaluates to true if the file exists. The file is searched for
on the system search path (see .PATH).

target
Takes a target name as an argument and evaluates to true if the target has been defined.

expression also may be an arithmetic or string comparison, with the left-hand side being a variable
expansion. The standard C relational operators are all supported, and the usual number/base conversion is
performed. Note, octal numbers are not supported. If the righthand value of a "==" or "!=" operator
begins with a quotation mark ("") a string comparison is done between the expanded variable and the text
between the quotation marks. If no relational operator is given, it is assumed that the expanded variable is
being compared against 0.

When make is evaluating one of these conditional expressions and it encounters a word it does not
recognize, either the "make" or "defined" expression is applied to it, depending upon the form of the
conditional. If the form is .ifdef or .ifndef, the "defined" expression is applied. Similarly, if the form is

POSIX.WRI -- Page 43

.ifmake or .ifnmake, the "make" expression is applied.

If the conditional evaluates to true, the parsing of the makefile continues as before. If it evaluates to false,
the following lines are skipped. In both cases this continues until a .else or .endif is found.

COMMENTS
Comments begin with a number sign ("#") character, anywhere but in a shell command line, and continue
to the end of the line.

SPECIAL SOURCES
.IGNORE

Ignores any errors from the commands associated with this target, exactly as if they all were
preceded by a dash ("-").

.MAKE
Executes the commands associated with this target, even if the -n or -t options were specified.
Normally used to mark recursive make's.

.NOTMAIN
Normally, make selects the first target it encounters as the default target to be built if no target
was specified. This source prevents this target from being selected.

.OPTIONAL
If a target is marked with this attribute and make cannot determine how to create it, it will ignore
this fact and assume that the file is not needed or already exists.

.PRECIOUS
When make is interrupted, it removes any partially made targets. This source prevents the target
from being removed.

.SILENT
Does not echo any of the commands associated with this target, exactly as if they all were
preceded by an at sign ("@").

.USE
Turns the target into make's version of a macro. When the target is used as a source for another
target, the other target acquires the commands, sources, and attributes (except for .USE) of the
source. If the target already has commands, the .USE target's commands are appended to them.

SPECIAL TARGETS
Special targets may not be included with other targets; i.e., they must be the only target specified.

.BEGIN
Any command lines attached to this target are executed before anything else is done.

.DEFAULT
This is sort of a .USE rule for any target (that was used only as a source) that make cannot figure
out any other way to create. Only the shell script is used. The .IMPSRC variable of a target that
inherits .DEFAULT's commands is set to the target's own name.

.END
Any command lines attached to this target are executed after everything else is done.

.IGNORE
Marks each of the sources with the .IGNORE attribute. If no sources are specified, this is the
equivalent of specifying the -i option.

.INTERRUPT
If make is interrupted, the commands for this target will be executed.

.MAIN
If no target is specified when make is invoked, this target will be built.

.MAKEFLAGS

POSIX.WRI -- Page 44

This target provides a way to specify flags for make when the makefile is used. The flags are as if
typed to the shell, though the -f option will have no effect.

POSIX.WRI -- Page 45

.PATH
The sources are directories that are to be searched for files not found in the current directory. If
no sources are specified, any previously specified directories are deleted.

.PRECIOUS
Applies the .PRECIOUS attribute to any specified sources. If no sources are specified, the
.PRECIOUS attribute is applied to every target in the file.

.SILENT
Applies the .SILENT attribute to any specified sources. If no sources are specified, the
.SILENT attribute is applied to every command in the file.

.SUFFIXES
Each source specifies a suffix to make. If no sources are specified, any previously specified
suffixes are deleted.

ENVIRONMENT
make utilizes the following environment variables, if they exist: MAKE, MAKEFLAGS,and
MAKEOBJDIR.

FILES
.depend list of dependencies
Makefile list of dependencies
makefile list of dependencies
sys.mk system makefile
/usr/share/mk system makefile directory

HISTORY
A make command appeared in Seventh Edition AT&T UNIX.

POSIX.WRI -- Page 46

NAME
mkdir -- make directories

SYNOPSIS
mkdir [-p] directory_name ...

DESCRIPTION
mkdir creates the directories named as operands, in the order specified, using mode 0777 modified by the
current umask.

The options follow.
-p

Creates intermediate directories as required. If this option is not specified, the full path prefix of
each operand must already exist.

The user must have write permission in the parent directory.

mkdir exits 0 if successful and >0 if an error occurred.

STANDARDS
mkdir is POSIX 1003.2-compliant. This manual page is derived from the POSIX 1003.2 manual page.

POSIX.WRI -- Page 47

NAME
mv -- move files

SYNOPSIS
mv [-f | -i] source target
mv [-f | -i] source ... directory

DESCRIPTION
In its first form, the mv utility renames the file named by the source operand to the destination path named
by the target operand. This form is assumed when the last operand does not name an already existing
directory.

In its second form, mv moves each file named by a source operand to a destination file in the existing
directory named by the directory operand. The destination path for each operand is the pathname
produced by the concatenation of the last operand, a slash, and the final pathname component of the
named file.

The following options are available.

-f
Does not prompt for confirmation before overwriting the destination path. (The -i option is
ignored if the -f option is specified.)

-i
Causes mv to write a prompt to standard error before moving a file that would overwrite an
existing file. If the response from the standard input begins with the character "y'", the move is
attempted.

It is an error for either the source operand or the destination path to specify a directory unless both do.
If the destination path does not have a mode that permits writing, mv prompts the user for confirmation as
specified for the -i option.

As the rename(2) call does not work across file systems, mv uses cp(1) and rm(1) to accomplish the
move. The effect is equivalent to:

 rm -f destination_path && \
 cp -pr source destination_path && \
 rm -rf source

The mv utility exits 0 on success and >0 if an error occurs.

STANDARDS
The mv utility is expected to be POSIX 1003.2-compatible.

POSIX.WRI -- Page 48

NAME
rm -- remove directory entries

SYNOPSIS
rm [-f | -i] [-d] [-R] [-r] file ...

DESCRIPTION
The rm utility attempts to remove the nondirectory type files specified on the command line. If the
permissions of the file do not permit writing and the standard input device is a terminal, the user is
prompted (on the standard error output) for confirmation.

The options are listed below.

-d
Attempts to remove directories as well as other types of files.

-f
Attempts to remove the files without prompting for confirmation, regardless of the file's
permissions. If the file does not exist, does not display a diagnostic message nor modify the exit
status to reflect an error. The -f option overrides any previous -i options.

-i
Requests confirmation before attempting to remove each file, regardless of the file's permissions
or whether or not the standard input device is a terminal. The -i option overrides any previous
-f options.

-R
Attempts to remove the file hierarchy rooted in each file argument. The -R option implies the
-d option. If the -i option is specified, the user is prompted for confirmation before each
directory's contents are processed (as well as before the attempt is made to remove the directory).
If the user does not respond affirmatively, the file hierarchy rooted in that directory is skipped.

-r
Equivalent to -R.

The rm utility removes symbolic links, not the files referenced by the links.
It is an error to attempt to remove the files "." and "..".

The rm utility exits 0 if all of the named files or file hierarchies were removed or if the -f option was
specified and all of the existing files or file hierarchies were removed. If an error occurs, rm exits with a
value >0.

COMPATIBILITY
The rm utility differs from historical implementations in that the -f option only masks attempts to remove
nonexistent files instead of masking a large variety of errors.

Also, historical rm implementations prompted on the standard output not the standard error output.

STANDARDS
The rm command is expected to be POSIX 1003.2-compatible.

POSIX.WRI -- Page 49

NAME
rmdir -- remove directories

SYNOPSIS
rmdir directory ...

DESCRIPTION
The rmdir utility removes the directory entry specified by each directory argument, provided it is empty.
Arguments are processed in the order given. To remove both a parent directory and a subdirectory of that
parent, the subdirectory must be specified first so that the parent directory is empty when rmdir tries to
remove it.

The rmdir utility exits with one of the following values:

0 Each directory entry specified by a directory operand referred to an empty directory and
was removed successfully.

>0 An error occurred.

STANDARDS
The rmdir function is expected to be POSIX 1003.2-compatible.

POSIX.WRI -- Page 50

NAME
ash -- a shell

SYNOPSIS
ash [-efIijnsxz] [+efIijnsxz] [-c command] [arg] ...

COPYRIGHT
Copyright © 1989 by Kenneth Almquist.

DESCRIPTION
ash is a version of sh(1) with features similar to those of the System V shell. This manual page lists all
the features of ash but concentrates upon the ones not in other shells.

Invocation
If the -c option is given, then the shell executes the specified shell command. The -s flag causes the shell
to read commands from the standard input (after executing any command specified with the -c option). If
neither the -s nor -c options are set, then the first arg is taken as the name of a file to read commands
from. If this is impossible because there are no arguments following the options, then ash will set the -s
flag and will read commands from the standard input.

The shell sets the initial value of the positional parameters from the args remaining after any arg used as
the name of a file of commands is deleted.

The flags (other than -c) are set by preceding them with "-" and cleared by preceding them with "+"; see
the set built-in command for a list of flags. If no value is specified for the -i flag, the -s flag is set and the
standard input and output of the shell are connected to terminals; then, the -i flag will be set. If no value
is specified for the -j flag, then the -j flag will be set if the -i flag is set.

When the shell is invoked with the -c option, it is good practice to include the -i flag if the command was
entered interactively by a user. For compatibility with the System V shell, the -i option should come after
the -c option.

If the first character of argument zero to the shell is "-", the shell is assumed to be a login shell; and the
files /etc/profile and .profile are read if they exist. If the environment variable SHINIT is set upon entry
to the shell, the commands in SHINIT are normally parsed and executed. SHINIT is not examined if the
shell is a login shell or if it the shell is running a shell procedure. (A shell is considered to be running a
shell procedure if neither the -s nor the -c options are set.)

Control Structures
A list is a sequence of zero or more commands separated by newlines, semicolons, or ampersands, and
optionally terminated by one of these three characters. (This differs from the System V shell, which, in
most cases, requires a list to contain at least one command.) The commands in a list are executed in the
order in which they are written. If a command is followed by an ampersand, the shell starts the command
and immediately proceeds on to the next command; otherwise it waits for the command to terminate
before proceeding to the next one.

"&&" and "||" are binary operators. "&&" executes the first command and then executes the second
command if the exit status of the first command is zero. "||" is similar but executes the second command
if the exit status of the first command is nonzero. "&&" and "||" both have the same priority.
The "|" operator is a binary operator that feeds the standard output of the first command into the standard
input of the second command. The exit status of the "|" operator is the exit status of the second command.
"|" has a higher priority than "||" or "&&".

POSIX.WRI -- Page 51

An if command looks like the following example.

 if list
 then list
 [elif list
 then list] ...
 [else list]
 fi
A while command looks like the following example.

 while list
 do list
 done
The two lists are executed repeatedly while the exit status of the first list is zero. The until command is
similar; however, it has the word until in place of while and repeats until the exit status of the first list is
zero.

The for command looks like the following example.

 for variable in word...
 do list
 done
The words are expanded; and, then, the list is executed repeatedly with the variable set to each word in
turn. do and done may be replaced with "{" and "}".

The break and continue commands look like the following example.

 break [num]
 continue [num]
break terminates the num'ths innermost for or while loops. continue continues with the next iteration of
the num'ths innermost loop. These are implemented as built-in commands.

The case command looks like the following example.

 case word in
 pattern) list ;;
 ...
 esac
The pattern can actually be one or more patterns (see Patterns below) separated by "|" characters.
Commands may be grouped by writing either one of the following.

 (list)
or

 { list; }
The first of these executes the commands in a subshell.

POSIX.WRI -- Page 52

A function definition looks like the following example.

 name () command
A function definition is an executable statement; when executed it installs a function named name and
returns an exit status of zero. The command is normally a list enclosed between "{" and "}".

Variables may be declared to be local to a function by using a local command. This should appear as the
first statement of a function; it should looks like the following example.

 local [variable | -] ...
local is implemented as a built-in command.

When a variable is made local, it inherits the initial value and exported and read-only flags from the
variable with the same name in the surrounding scope, if there is one. Otherwise, the variable is initially
unset. ash uses dynamic scoping so that, if you make the variable x local to function f, which then calls
function g, references to the variable x made inside g will refer to the variable x declared inside f, not to
the global variable named x.

The only special parameter that can be made local is "-". Making "-" local sets any shell options that are
changed via the set command inside the function to be restored to their original values when the function
returns.

The return command looks like the following example.

 return [exitstatus]
It terminates the currently executing function. return is implemented as a built-in command.

Simple Commands
A simple command is a sequence of words. The execution of a simple command proceeds as follows.
First, the leading words of the form "name=value" are stripped off and assigned to the environment of the
command. Second, the words are expanded. Third, the first remaining word is taken as the command
name of the command that is located. Fourth, any redirections are performed. Fifth, the command is
executed. We look at these operations in reverse order.

The execution of the command varies with the type of command. There are three types of commands:
shell functions, built-in commands, and normal programs.

When a shell function is executed, all of the shell positional parameters (except $0, which remains
unchanged) are set to the parameters to the shell function. The variables that are explicitly placed in the
environment of the command (by placing assignments to them before the function name) are made local
to the function and are set to values given. Then, the command given in the function definition is
executed. The positional parameters are restored to their original values when the command completes.
Shell built-ins are executed internally to the shell, without spawning a new process.

When a normal program is executed, the shell runs the program, passing the parameters and the
environment to the program. If the program is a shell procedure, the shell will interpret the program in a
subshell. The shell will reinitialize itself in this case, so that the effect will be as if a new shell had been
invoked to handle the shell procedure, except that the location of commands located in the parent shell
will be remembered by the child. If the program is a file beginning with "#!", the remainder of the first
line specifies an interpreter for the program. In this case, the shell (or the operating system, under
Berkeley UNIX) will run the interpreter. The arguments to the interpreter will consist of any arguments

POSIX.WRI -- Page 53

given on the first line of the program, followed by the name of the program, followed by the arguments
passed to the program.

POSIX.WRI -- Page 54

Redirection
Input/output redirections can be intermixed with the words in a simple command and can be placed
following any of the other commands. When redirection occurs, the shell saves the old values of the file
descriptors and restores them when the command completes. The "<", ">", and ">>" redirections open a
file for input, output, and appending, respectively. The "<&digit" and ">&digit" makes the input or
output a duplicate of the file descriptor numbered by the digit. If a minus sign is used in place of a digit,
the standard input or the standard output is closed.

The "<< word" redirection takes input from a here document. As the shell encounters "<<" redirections, it
collects them. The next time it encounters an unescaped newline, it reads the documents in turn. The
word following the "<<" specifies the contents of the line that terminates the document. If none of the
quoting methods ('', "", or \) are used to enter the word, then the document is treated like a word inside
double quotes: "$" and backquote are expanded and backslash can be used to escape these and to
continue long lines. The word cannot contain any variable or command substitutions, and its length (after
quoting) must be in the range of 1 to 79 characters. If "<<-" is used in place of "<<", then leading tabs are
deleted from the lines of the document. (This is to allow you to do indent shell procedures containing
here documents in a natural fashion.)

Any of the preceding redirection operators may be preceded by a single digit specifying the file descriptor
to be redirected. There cannot be any white space between the digit and the redirection operator.

Path Search
When locating a command, the shell first looks to see if it has a shell function by that name. Then, if
PATH does not contain an entry for "%builtin", it looks for a built-in command by that name. Finally, it
searches each entry in PATH in turn for the command.

The value of the PATH variable should be a series of entries separated by colons. Each entry consists of a
directory name, or a directory name followed by a flag beginning with a percent sign. The current
directory should be indicated by an empty directory name.

If no percent sign is present, then the entry causes the shell to search for the command in the specified
directory. If the flag is "%builtin", then the list of shell built-in commands is searched. If the flag is
"%func", then the directory is searched for a file that is read as input to the shell. This file should define a
function whose name is the name of the command being searched for.

Command names containing a slash are simply executed without performing any of the above searches.

The Environment
The environment of a command is a set of name/value pairs. When the shell is invoked, it reads these
names and values, sets the shell variables with these names to the corresponding values, and marks the
variables as exported. The export command can be used to mark additional variables as exported.

The environment of a command is constructed by constructing name/value pairs from all the exported
shell variables, and then by modifying this set by the assignments that precede the command, if any.

Expansion
The process of evaluating words when a shell procedure is executed is called expansion. Expansion
consists of four steps: variable substitution, command substitution, word splitting, and file name
generation. If a word is the expression following the word case in a case statement, the file name that
follows a redirection symbol, or an assignment to the environment of a command, then the word cannot
be split into multiple words. In these cases, the last two steps of the expansion process are omitted.

Command Substitution

POSIX.WRI -- Page 55

ash accepts two syntaxes for command substitution, as listed below.

 'list'
and

 $(list)
Either of these may be included in a word. During the command substitution process, the command
(syntactically a list) will be executed, and anything that the command writes to the standard output will be
captured by the shell. The final newline (if any) of the output will be deleted; the rest of the output will
be substituted for the command in the word.

Word Splitting
When the value of a variable or the output of a command is substituted, the resulting text is subject to
word splitting, unless the dollar sign introducing the variable or backquotes containing the text were
enclosed in double quotes. In addition, "$@" is subject to a special type of splitting, even in the presence
of double quotes.

ash uses two different splitting algorithms. The normal approach, which is intended for splitting text
separated by white space, is used if the first character of the shell variable IFS is a space. Otherwise, an
alternative experimental algorithm, which is useful for splitting (possibly empty) fields separated by a
separator character, is used.

When performing splitting, the shell scans the replacement text looking for a character (when IFS does
not begin with a space) or a sequence of characters (when IFS does begin with a space), deletes the
character or sequence of characters, and spits the word into two strings at that point. When IFS begins
with a space, the shell deletes either of the strings if they are null. As a special case, if the word
containing the replacement text is the null string, the word is deleted.

The variable "$@" is special in two ways. First, splitting takes place between the positional parameters,
even if the text is enclosed in double quotes. Second, if the word containing the replacement text is the
null string and there are no positional parameters, then the word is deleted. The result of these rules is
that "$@" is equivalent to "$1" "$2" ... "$n", where n is the number of positional parameters. (Note that
this differs from the System V shell. The System V documentation claims that "$@" behaves this way; in
fact on the System V shell "$@" is equivalent to "" when there are no positional paramteters.)

File Name Generation
Unless the -f flag is set, file name generation is performed after word splitting is complete. Each word is
viewed as a series of patterns, separated by slashes. The process of expansion replaces the word with the
names of all existing files whose names can be formed by replacing each pattern with a string that
matches the specified pattern. There are two restrictions on this: first, a pattern cannot match a string
containing a slash; and, second, a pattern cannot match a string starting with a period unless the first
character of the pattern is a period.

If a word fails to match any files and the -z flag is not set, then the word will be left unchanged (except
that the meta characters will be converted to normal characters). If the -z flag is set, then the word is only
left unchanged if none of the patterns contain a character that can match anything other than itself.
Otherwise, the -z flag forces the word to be replaced with the names of the files that it matches, even if
there are zero names.

POSIX.WRI -- Page 56

Patterns
A pattern consists of normal characters, which match themselves, and meta characters. The meta
characters are "!", "*", "?", and "[". These characters lose there special meanings if they are quoted.
When command or variable substitution is performed and the dollar sign or back quotes are not double
quoted, the value of the variable or the output of the command is scanned for these characters and they are
turned into meta characters.

Two exclamation points at the beginning of a pattern function as a "not" operator, causing the pattern to
match any string that the remainder of the pattern does not match. Other occurrences of exclamation
points in a pattern match exclamation points. Two exclamation points are required, rather than one, to
decrease the incompatibility with the System V shell (which does not treat exclamation points specially).
An asterisk ("*") matches any string of characters. A question mark matches any single character. A left
bracket ("[") introduces a character class. The end of the character class is indicated by a "]"; if the "]" is
missing, then the "[" matches a "[" rather than introducing a character class. A character class matches
any of the characters between the square brackets. A range of characters may be specified using a minus
sign. The character class may be complemented by making an exclamation point of the first character of
the character class.

To include a "]" in a character class, make it the first character listed (after the "!", if any). To include a
minus sign, make it the first or last character listed.

The /u Directory
By convention, the name "/u/user" refers to the home directory of the specified user. There are good
reasons why this feature should be supported by the file system (using a feature such as symbolic links)
rather than by the shell, but ash is capable of performing this mapping if the file system does not. If the
mapping is done by ash, setting the -f flag will turn it off.

Character Set
ash silently discards NUL characters. Any other character will be handled correctly by ash, including
characters with the high-order bit set.

Job Names and Job Control
The term job refers to a process created by a shell command or, in the case of a pipeline, to the set of
processes in the pipeline. The ways to refer to a job follow.

 %number %string %% process_id

The first form identifies a job by its job number. When a command is run, ash assigns it a job number
(the lowest unused number is assigned). The second form identifies a job by giving a prefix of the
command used to create the job. The prefix must be unique. If there is only one job, then the null prefix
will identify the job, so you can refer to the job by writing "%". The third form refers to the current job.
The current job is the last job to be stopped while it was in the foreground. (See the next paragraph.) The
last form identifies a job by giving the process id of the last process in the job.

If the operating system that ash is running on supports job control, ash will allow you to use it. In this
case, typing the suspend character (typically ^Z) while running a command will return you to ash and will
make the suspended command the current job. You can then continue the job in the background by typing
bg, or you can continue it in the foreground by typing fg.

ATTY
If the shell variable ATTY is set and the shell variable TERM is not set to "emacs", then ash generates
appropriate escape sequences to talk to atty(1).

POSIX.WRI -- Page 57

Exit Statuses
By tradition, an exit status of zero means that a command has succeeded, and a nonzero exit status
indicates that the command failed. This is better than no convention at all; but, in practice, it is extremely
useful to allow commands that succeed to use the exit status to return information to the caller. A variety
of better conventions have been proposed, but none of them has met with universal approval. The
convention used by ash and all the programs included in the ash distribution follows.

0 Success
1 Alternate success
2 Failure
129-... Command terminated by a signal

The alternate success return is used by commands to indicate various conditions that are not errors but
which can, with a little imagination, be conceived of as less successful than plain success. For example,
test returns 1 when the tested condition is false and getopts returns 1 when there are no more options.
Because this convention is not used universally, the -e option of ash causes the shell to exit when a
command returns 1, even though that contradicts the convention described here.

When a command is terminated by a signal, it uses 128 plus the signal number as the exit code for the
command.

Built-in Commands
This concluding section lists the built-in commands that are built in because they need to perform some
operation that cannot be performed by a separate process. In addition to these, there are several other
commands (catf, echo, expr, line, nlecho, test, ":", and true) that can optionally be compiled into the shell.
The built-in commands described below that accept options use the System V Release 2 getopt(3) syntax.

bg [job] ...
Continues the specified jobs (or the current job if no jobs are given) in the background. This
command is only available on systems with Berkeley job control.

bltin command arg ...
Executes the specified built-in command. (This is useful when you have a shell function with the
same name as a built-in command.)

cd [directory]
Switchs to the specified directory (default $HOME). If an entry for CDPATH appears in the
environment of the cd command or the shell variable CDPATH is set and the directory name does
not begin with a slash, then the directories listed in CDPATH will be searched for the specified
directory. The format of CDPATH is the same as that of PATH. In an interactive shell, the cd
command will print out the name of the directory that it actually switched to if this is different
from the name that the user gave. These may be different either because the CDPATH
mechanism was used or because a symbolic link was crossed.

. file
The commands in the specified file are read and executed by the shell. A path search is not done
to find the file because the directories in PATH generally contain files that are intended to be
executed, not read.

eval string ...
The strings are parsed as shell commands and executed. (This differs from the System V shell,
which concatenates the arguments (separated by spaces) and parses the result as a single
command.)

POSIX.WRI -- Page 58

exec [command arg ...]
Unless command is omitted, the shell process is replaced with the specified program (which must
be a real program, not a shell built-in or function). Any redirections on the exec command are
marked as permanent so that they are not undone when the exec command finishes. If the
command is not found, the exec command causes the shell to exit.

exit [exitstatus]
Terminates the shell process. If exitstatus is given, it is used as the exit status of the shell;
otherwise, the exit status of the preceding command is used.

export name ...
The specified names are exported so that they will appear in the environment of subsequent
commands. The only way to unexport a variable is to unset it. ash allows the value of a variable
to be set at the same time it is exported by writing the following.

 export name=value
With no arguments, the export command lists the names of all exported variables.

fg [job]
Moves the specified job or the current job to the foreground. This command is only available on
systems with Berkeley job control.

getopts optstring var
The System V getopts(1) command.

hash [-rv] command ...
The shell maintains a hash table that remembers the locations of commands. With no arguments
whatsoever, the hash command prints out the contents of this table. Entries that have not been
looked at since the last cd command are marked with an asterisk; it is possible for these entries to
be invalid.

With arguments, the hash command removes the specified commands from the hash table (unless
they are functions) and then locates them. With the -v option, hash prints the locations of the
commands as it finds them. The -r option causes the hash command to delete all the entries in
the hash table except for functions.

jobid [job]
Prints the process id's of the processes in the job. If the job argument is omitted, uses the current
job.

jobs
This command lists out all the background processes that are children of the current shell process.

lc [function-name]
The function name is defined to execute the last command entered. If the function name is
omitted, the last command executed is executed again. This command only works if the -i flag is
set.

pwd
Prints the current directory. The built-in command may differ from the program of the same
name because the built-in command remembers what the current directory is rather than
recomputing it each time. This makes it faster. However, if the current directory is renamed, the

POSIX.WRI -- Page 59

built-in version of pwd will continue to print the old name for the directory.

read [-p prompt] [-e] variable ...
The prompt is printed if the -p option is specified and the standard input is a terminal. Then, a
line is read from the standard input. The trailing newline is deleted from the line, and the line is
split (as described in the section on word splitting above) and the pieces are assigned to the
variables in order. If there are more pieces than variables, the remaining pieces (along with the
characters in IFS that separated them) are assigned to the last variable. If there are more variables
than pieces, the remaining variables are assigned the null string.

The -e option causes any backslashes in the input to be treated specially. If a backslash is
followed by a newline, the backslash and the newline will be deleted. If a backslash is followed
by any other character, the backslash will be deleted and the following character will be treated as
though it were not in IFS, even if it is.

readonly name ...
The specified names are marked as read only, so that they cannot be subsequently modified nor
unset. ash allows the value of a variable to be set at the same time it is marked read-only by
writing the following.

 readonly name=value
With no arguments, the read-only command lists the names of all read-only variables.

set [{ -options | +options | -- }] [arg ...]
The set command performs three different functions.

With no arguments, it lists the values of all shell variables.

If options are given, it sets the specified option flags, or clears them if the option flags are
introduced with a + rather than a -. Only the first argument to set can contain options. The
possible options are listed below.

-e Causes the shell to exit when a command terminates with a nonzero exit status, except
when the exit status of the command is explicitly tested. The exit status of a command is
considered to be explicitly tested if the command is used to control an if, elif, while, or
until or if the command is the left-hand operand of an "&&" or "||" operator.

-f Turns off file name generation.

-I Causes the shell to ignore end-of file-conditions. (This does not apply when the shell is a
script source using the "." command.) The shell will, in fact, exit if it gets 50 EOF's in a
row.

-i Makes the shell interactive. This causes the shell to prompt for input, to trap interrupts, to
ignore quit and terminate signals, and to return to the main command loop rather than
exiting upon error.

-j Turns on Berkeley job control on systems that support it. When the shell starts up, the
 -j is set by default if the -i flag is set.

-n Causes the shell to read commands but not to execute them. (This is marginally useful
for checking the syntax of scripts.)

POSIX.WRI -- Page 60

-s If this flag is set when the shell starts up, the shell reads commands from its standard
input. The shell does not examine the value of this flag at any other time.

-x If this flag is set, the shell will print out each command before executing it.

-z If this flag is set, the file name generation process may generate zero files. If it is not set,
then a pattern that does not match any files will be replaced by a quoted version of the
pattern.

The third use of the set command is to set the values of the shell's positional parameters to the
specified args. To change the positional parameters without changing any options, use "--" as the
first argument to set. If no args are present, the set command will leave the value of the
positional parameters unchanged. Therefore, to set the positional parameters to a set of values
that may be empty, execute the command

 shift $#
first to clear out the old values of the positional parameters.

setvar variable value
Assigns value to variable. (In general, it is better to write variable=value rather than using
setvar. setvar is intended to be used in functions that assign values to variables whose names are
passed as parameters.)

shift [n]
Shift the positional parameters n times. A shift sets the value of $1 to the value of $2, the value of
$2 to the value of $3, and so on, decreasing the value of $# by one. If there are zero positional
parameters, shifting does not do anything.

trap [action] signal ...
Causes the shell to parse and execute action when any of the specified signals are received. The
signals are specified by signal number. action may be null or omitted; the former causes the
specified signal to be ignored and the latter causes the default action to be taken. When the shell
forks off a subshell, it resets trapped (but not ignored) signals to the default action. The trap
command has no effect upon signals that were ignored upon entry to the shell.

umask [mask]
Sets the value of umask to the specified octal value. If the argument is omitted, the umask value
is printed.

unset name ...
The specified variables and functions are unset and unexported. If a given name corresponds to
both a variable and a function, both the variable and the function are unset.

wait [job]
Waits for the specified job to complete and returns the exit status of the last process in the job. If
the argument is omitted, waits for all jobs to complete and then returns an exit status of zero.

POSIX.WRI -- Page 61

EXAMPLES
The following function redefines the cd command:

 cd() {
 if bltin cd "$@"
 then if test -f .enter
 then . .enter
 else return 0
 fi
 fi
 }

This function causes the file ".enter" to be read when you enter a directory, if it exists. The bltin
command is used to access the real cd command. The "return 0" ensures that the function will return an
exit status of zero if it successfully changes to a directory that does not contain a ".enter" file. Redefining
existing commands is not always a good idea, but this example shows that you can do it if you want to.
The suspend function distributed with ash looks like the following example.

 # Copyright (C) 1989 by Kenneth Almquist. All rights reserved.
 # This file is part of ash, which is distributed under the terms
 # specified by the Ash General Public License.

 suspend() {
 local -
 set +j
 kill -TSTP 0
}

This turns off job control and then sends a stop signal to the current process group, which suspends the
shell. (When job control is turned on, the shell ignores the TSTP signal.) Job control will be turned back
on when the function returns because "-" is local to the function. As an example of what not to do,
consider an earlier version of suspend, as illustrated below.

 suspend() {
 suspend_flag=$-
 set +j
 kill -TSTP 0
 set -$suspend_flag
 }

There are two problems with this. First, suspend_flag is a global variable rather than a local one, which
will cause problems in the (unlikely) circumstance that the user is using that variable for some other
purpose. Second, consider what happens if shell received an interrupt signal after it executes the first set
command but before it executes the second one. The interrupt signal will abort the shell function, so that
the second set command will never be executed and job control will be left off. The first version of
suspend avoids this problem by turning job control off only in a local copy of the shell options. The local
copy of the shell options is discarded when the function is terminated, no matter how it is terminated.

HINTS
Shell variables can be used to provide abbreviations for things that you type frequently. For example, if
you set export h=$HOME in your.profile so that you can type the name of your home directory simply by
typing "$h".

POSIX.WRI -- Page 62

When writing shell procedures, try not to make assumptions about what is imported from the
environment. Explicitly unset or initialize all variables, rather than assuming they will be unset. If you
use cd, it is a good idea to unset CDPATH.

People sometimes use "<&-" or ">&-" to provide no input to a command or to discard the output of a
command. A better way to do this is to redirect the input or output of the command to /dev/null.
Word splitting and file name generation are performed by default, and you must explicitly use double
quotes to suppress it. This is backwards, but you can learn to live with it. Just get in the habit of writing
double quotes around variable and command substitutions, and omit them only when you really want
word splitting and file-name generation. If you want word splitting but not file-name generation, use the
-f option.

AUTHORS
Kenneth Almquist

BUGS
When command substitution occurs inside a here document, the commands inside the here document are
run with their standard input closed. For example, the following will not work because the standard input
of the line command will be closed when the command is run.

 cat <<-!
 Line 1: $(line)
 Line 2: $(line)
 !

Unsetting a function that is currently being executed may cause strange behavior.

The shell syntax allows a here document to be terminated by an end-of-file as well as by a line containing
the terminator word that follows the "<<". What this means is that, if you mistype the terminator line, the
shell will silently swallow up the rest of your shell script and stick it in the here document.

POSIX.WRI -- Page 63

NAME
touch -- update last modification date of a file

SYNOPSIS
touch [-c] [-f] file ...

DESCRIPTION
The touch utility changes the modification and or access times of the given file operands.

Available options:

-c
Does not create a specified file if it does not exist. Does not write any diagnostic messages
concerning this condition.

-f
Attempts to force the touch in spite of read and write permissions on a file.

HISTORY
A touch command appeared in Seventh Edition AT&T UNIX.

POSIX.WRI -- Page 64

NAME
wc -- word, line, and byte count

SYNOPSIS
wc [-c] [-l] [-w] [file ...]

DESCRIPTION
The wc utility reads one or more input text files, and, by default, writes the number of lines, words, and
bytes contained in each input file to the standard output. If more than one input file is specified, a line of
cumulative counts for all named files is output on a separate line following the last file count. wc
considers a word to be a maximal string of characters, delimited by white space.

The following options are available.

-c
The number of bytes in each input file is written to the standard output.

-l
The number of lines in each input file is written to the standard output.

-w
The number of words in each input file is written to the standard output.

When an option is specified, wc only reports the information requested by that option. The default action
is equivalent to all the flags (-lwc) having been specified.

The following operands are available.

 file A pathname of an input file.
If no file names are specified, the standard input is used and a file name is not output. The resulting
output is one line of the requested count(s), with the cumulative sum of all data read in via standard input.

By default, the standard output contains a line for each input file of the form:

 lines words bytes file_name

The counts for lines, words, and bytes are integers separated by spaces. The ordering of the display of the
number of lines, words, and/or bytes is the order in which the options were specified.
The wc utility exits 0 on success and >0 if an error occurs.

STANDARDS
The wc function conforms to POSIX 1003.2.

